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Abstract

Segmentation is the process of partitioning digital images into mean-
ingful regions. The analysis of biological high content images often re-
quires segmentation as a first step. We propose ilastik as an easy-to-use
tool which allows the user without expertise in image processing to per-
form segmentation and classification in a unified way. ilastik learns from
labels provided by the user through a convenient mouse interface. Based
on these labels, ilastik infers a problem specific segmentation. A random
forest classifier is used in the learning step, in which each pixel’s neigh-
borhood is characterized by a set of generic (nonlinear) features. ilastik
supports up to three spatial plus one spectral dimension and makes use
of all dimensions in the feature calculation. ilastik provides realtime feed-
back that enables the user to interactively refine the segmentation result
and hence further fine-tune the classifier. An uncertainty measure guides
the user to ambiguous regions in the images. Real time performance is
achieved by multi-threading which fully exploits the capabilities of mod-
ern multi-core machines. Once a classifier has been trained on a set of
representative images, it can be exported and used to automatically pro-
cess a very large number of images (e.g. using the CellProfiler pipeline).
ilastik is an open source project and released under the BSD license at
www.ilastik.org.

1 Introduction

ilastik is a software that combines interactive machine learning, active learning,
and the ability to cope with complex textures within a convenient and unified
user interface. The basic recipe behind ilastik consists of three parts: (1) Non-
linear image features provide a generic basis to represent diverse local image
characteristics. (2) A state-of-the-art classifier is used to learn from user input,
which is given by a paint interface. The user can define an arbitrary number
of classes (e.g. background, type one, type two, etc) (3) In the training phase,
the user can fine-tune the classifier by interactively providing new labels. To

1



guide the user ilastik displays several overlays. The prediction by the classifier
indicates where the classifier may still be wrong. Another overlay, called uncer-
tainty map, highlights regions in which the prediction is the most ambiguous. It
allows to actively guide the user to difficult image regions, where the classifier
deems new labels most informative. Once ilastik has been interactively trained
on a set of representative images, it can be used to automatically process a very
large number of images in a batch processing mode or using the CellProfiler [1]
pipeline.

To demonstrate ilastik, we present experimental results in section 3 that
corroborate ilastik’s performance and transferability to other segmentation and
classification tasks. Yet, neither problem-specific preprocessing nor special-
purpose features are needed to achieve reliable results. ilastik also shows an
excellent run-time performance of the underlying algorithms (in 2D and 3D).
As an open source tool, ilastik is designed to be extensible without requiring a
detailed understanding of the aspects of the internal software architecture. The
basic ingredients of ilastik (features, classifier) can easily be extended and ex-
changed (e.g. using different classifiers). Whole new modules, which may offer
custom functionality within ilastik can be integrated via a plug-in mechanism.

1.1 Related Work

The majority of interactive segmentation approaches are based on user seeds
[2, 3, 4, 5, 6, 7]. The seeds, provided by brush strokes, act as hard constraints
from which the segmentation works outwards to fill a desired region. Methods
based on graph cut [5, 8, 4] extend this idea by explicitly modeling a boundary
component. A segmentation is achieved by modeling the region and the bound-
ary term as a weighted combination and optimizing the minimal cut between
foreground and background seeds. Usually, the region weights are inferred from
the respective seed pixels, while edge filters act as boundary weights. ilastik
can be used to learn the regional properties of objects or even to explicitly learn
the boundary weights between different objects. This flexibility may be a useful
input to seeded segmentation techniques.

2 Methods

2.1 Feature Computation

The features are computed in the full 2D/3D pixel neighborhoods, depending
on the available data. While the provided set of features includes popular color,
edge and texture descriptors, the plug-in functionality allows advanced users
to add their own problem-specific features. The standard features of ilastik
accounting for a specific type of image structure are grouped together: Color
and intensity consist of the raw intensity values of the image smoothed with a
Gaussian. Edge is defined by including edge indicator functions such as the
eigenvalues of the structure tensor, eigenvalues of the Hessian matrix, gradient
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magnitude, difference of Gaussians and Laplacian of Gaussian. Texture com-
prises the eigenvalues of the structure tensor, eigenvalues of the Hessian matrix.
Orientation comprises the raw structure tensor and Hessian matrix entries.
All these groups can be selected on 7 scales, with a total of 35 different choices.
The user is free to combine these selections in order to generate an appropriate
feature set for the problem at hand.

Figure 1: The basic ilastik work flow: (A) Initial labels, (B) live prediction
mode showing interactive prediction, (C) a few more labels to correct for wrong
classification due to illumination inhomogeneity, (D) updated classification re-
sult

In order to provide feedback to the user as to which features were important
for a specific classification task, ilastik outputs a variable importance (mean
Gini decrease [9]). This refers to the process of selecting a subset of relevant
features from the entire set. In particular, for applications (e.g. dealing with
multi-spectral data) in which each variable has an associate interpretation the
detection of informative features can facilitate the imaging procedure [10].

2.2 Classification and Active Learning

The ability of the random forest to capture highly non-linear decision boundaries
in feature space is a major prerequisite for the application to general sets of
use cases. The classification is performed using the random forest classifier
introduced in [9]. Random forests consist of many decision trees. The individual
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trees are not pruned in the training phase and are built under random influence:
(1) Each tree is built based on a bootstrap sample (bag) of the training data .
The out-of-bag samples are used to estimate of the real test error. (2) In each
node only a random subset of candidate features are evaluated to find the best
split according to the Gini impurity.

During prediction, each pixel is classified by collecting the votes of each
individual tree. The ratio of the tree votes is interpreted as a posterior proba-
bility and provides the basis of the segmentation step. ilastik defaults to train
NT = 100 decision trees. Besides the prediction ilastik computes a uncertainty
map, which guides the user to ambiguous regions in the image. For this purpose,
ilastik implements the margin [9] of the classification.

2.3 Graphical User Interface

To illustrate the basic work flow of ilastik1, we consider the problem of cell
segmentation. The cell images consist of two channels. One channel shows
the cell nuclei (red) while the other shows the cytoplasm (green). Some of the
cell nuclei are of the mitosis phenotype (condensed nuclei, appearing yellow).
To discriminate these classes and the background one would use ilastik in the
following way: (0) Create new project and add the RGB images to it (1)
Create four label classes (background, nuclei, mitotic nuclei, cytoplasm), (2)
give some label strokes to indicate the four different objects, (3) compute color
features, (4) switch to live prediction mode, (5) correct with more labels until
a satisfactory result is achieved. This process is illustrated in Figure 1.

3 Results

To evaluate the performance of ilastik, we show results on three biological data
sets.

3D neuron data: The first data set (courtesy of Graham Knott, EPF
Lausanne) is a 3D-volume containing neurons, which include mitochondria and
vesicles. One aim in preprocessing for automated neuron segmentation is to
distinguish between the four classes neuron interior (red), neuron boundary
(green), mitochondria (yellow), and vesicles (blue).The high-resolution volume
in Figure 2 shows a 3D sub-cube (1503 voxels) of the mammalian brain recorded
with the FIBS-technique (Focused Ion Beam). ilastik computes the image fea-
tures in 3D and can thus benefit from the isotropic resolution of the 3D volume.
Figure 2 shows that after training with a few examples ilastik is able to predict
other instances of the same kind (e.g. mitochondria in the upper left slice view).

Fundus images: The publicly available STARE database [11], consists of
20 retinal images. The aim is to segment low-contrast blood vessels in retinal
fundus images. Two observers manually segmented all images. Performance
is estimated by taking the segmentation of the first observer as ground truth.
For the sake of comparability, the evaluation procedure of Soares et al. [12]

1Also consider the tutorial videos on www.ilastik.org
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Figure 2: ilastik for 3D volumes: (top) initial labels in different slices, (bottom)
prediction after first classification round into four classes: neuron interior (red),
neuron boundary (green), mitochondria (yellow) and vesicles (blue)

is adopted which includes leave-one-image-out cross-validation and ROC-curve
analysis. We labeled the 20 images from the STARE database in approximately
1h, resulting in an average of 0.84% of foreground and 11% background coverage.
Every image was segmented using the user labels from the other 19 images of
the training set. Performance, however, was computed against the ground truth
segmentation. The segmentation was produced by thresholding the smoothed
probability map. The smoothing with a Gaussian filter (σ = 1) was used to re-
duce spurious vessel detections. The results were compared to the matched filter
results from Chaudhuri et al. [13], 2-D Gabor wavelets from Soares et al. [12],
adaptive local thresholding scheme from Jiang et al. [14], and the ridge-based
segmentation proposed by Staal et al. [15]. Performance was measured using
ROC curves (see Figure 3). Results indicate that ilastik achieves competitive
performance without a problem-specific development effort.

Cell counting: Identification and segmentation of cells and their phenotype
is a standard task in biological image processing. Especially in high-throughput
experiments, it facilitates the study of many normal, neoplastic and replication
processes. A main discipline in that area is the counting of cells with a partic-
ular phenotype of interest. We use the Human HT29 Colon Cancer 1 image
set [16] published in the Broad Bioimage Benchmark Collection. Some of the
cells are mitotic and appear slightly brighter. The background and the two
different types of cell nuclei types were marked by a user in about 5 minutes,
resulting in 5.12% background and 0.37% cell nuclei (normal and mitotic) la-
bel coverage. Once again leave-one-image-out cross-validation was performed.
The probability maps from the supervised classification were fed into a modified
marker-based watershed transform (not yet part of ilastik). Seeds for the three
different classes are generated by smoothing (σ = 1) and thresholding (t = 0.5)
each probability map. The actual watershed transform is computed on the gra-
dient of the background probability. The ground truth for this data set is the
total cell count of two observers for each image. The average absolute deviation
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from the mean count of the two observers is 10.47% while the two human ob-
servers vary by 11% for this image set. The average cell count of the algorithm
is slightly higher than the two human counts due to over-segmentation. While
the human observers merely counted all cells in this data set, ilastik predicts
each cell to be mitotic or not.

Method Az Accuracy

Soares et al. [12] 0.967 0.948
Chaudhuri et al. [13] 0.899 −
Jiang et al. [14] 0.930 0.901
Staal et al. [15] 0.964 0.952
our results 0.945 0.959

Figure 3: ROC analysis for fundus images after leave-one-image-out cross-
validation

Outlook: ilastik is released in version 0.5 and available at www.ilastik.

org. Future versions are already in the making and will include: (1) seeded
segmentation algorithms such as watershed (2) unsupervised dimension reduc-
tion techniques (e.g. PCA, PLSA) to help condense information from image
features and multi-spectral images. (3) Hierarchical processing by allowing sub-
sequent analyses on top of intermediate results (e.g. interactive learning inside
a previously learned mask).

4 Conclusion

In this paper we proposed ilastik to tackle standard image processing tasks
(2D and 3D) in the field of biomedical image processing without resorting to
programming expertise. ilastik combines a user friendly interface with a set
of state-of-the-art algorithms. The approach is robust and work across many
types of images and volumes. The segmentation framework is extended in a
multi-class sense to allow for different object types and problems.

ilastik is limited to local cues such as brightness, color and texture and is
not designed to capture global configurations. For many standard problems,
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however, ilastik yields results of surprisingly good quality and hence allows to
solve problems that previously would have required hand-tailored algorithms.

We release ilastik under the open source BSD license to endorse the idea of
free software. It can be used and extended without any restrictions. We expect
ilastik to be a useful tool in many applications in the field of biomedical image
processing and invite developers to contribute in a collaborative setting.
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