
Textbook for 1st Math-Clinic Bioimage
Analysis Training Course

using Fiji and ilastik to solve:
2D spots counting,
2D+time tracking,

3D object-based colocalization

(Targeted for biologists with image analysis basics and starting image
analysts)

Chong Zhang

Math-Clinic, CellNetworks

University of Heidelberg, Germany

2014

CONTENTS

Contents i

Preface and Acknowledgements iii

1 Fiji and ilastik 1
1.1 Aim . 4
1.2 Fiji . 4

1.2.1 Installation and updates . 4
1.2.2 Plugins . 4

1.3 ilastik: the interactive learning and segmentation toolkit 5
1.3.1 Installation and updates . 6

1.3.1.1 Install CPLEX . 6
1.4 Resources . 9

2 Counting spots 11
2.1 Aim . 14
2.2 Introduction . 14
2.3 A Fiji solution . 14

2.3.1 Detecting objects . 15
2.3.1.1 Detecting and counting nucleus 15
2.3.1.2 Detecting lyososome spots 15

2.3.2 Counting spots . 16
2.3.2.1 counting spots in nucleus 17
2.3.2.2 counting spots in regions where mitochondria also presents 17

2.3.3 Convert the recorded commands into a macro script 19
2.4 ilastik solution . 20

2.4.1 ilastik Density Counting workflow . 20
2.4.2 Training and predicting density . 20
2.4.3 Counting objects/spots . 22

2.4.3.1 Counting using Box in ilastik 22
2.5 Counting in Fiji from ilastik predictions using arbitrary shapes 25
2.6 Tips and tools . 27
2.7 Groups close by which work on similar problems 27
2.8 References . 28

i

3 2D+time tracking 29
3.1 Aim . 32
3.2 Introduction . 32
3.3 a Fiji solution . 32

3.3.1 Other possibilities to solve tracking problem 34
3.4 ilastik solution . 34

3.4.1 Segmentation with ilastik Pixel Classification workflow 34
3.4.2 ilastik Automatic Tracking workflow 35

3.4.2.1 Object extraction . 35
3.4.2.2 Tracking . 37

3.5 Tracking analysis in Fiji: plot trajectory, displacement, or velocity 37
3.5.1 Plot trajectories on image . 40
3.5.2 Plot displacements or velocity . 41

3.6 Tips and tools . 42
3.7 Groups close by which work on similar problems 43
3.8 References . 43

4 3D Object based colocalization 45
4.1 Aim . 48
4.2 Introduction . 48
4.3 Segmenting spots using ilastik Pixel Classification workflow 49
4.4 Writing our own ImageJ macro for fully automatic colocalization 50

4.4.1 Filtering objects by size . 51
4.4.1.1 Filtering by 3D sizes . 51
4.4.1.2 Filtering by 2D sizes . 52

4.4.2 Finding spatial overlapping objects in both channels 53
4.4.3 Filtering the colocalization objects by volume overlap percentage

criteria . 56
4.4.4 Visualizing results . 57
4.4.5 Testing the macro on Hela cells with viral replication 58
4.4.6 Setting up a parameter interface . 59

4.5 Tips and tools . 59
4.6 Groups close by which work on similar problems 60
4.7 References . 60

5 Related resources 61

ii

PREFACE AND ACKNOWLEDGEMENTS

In CellNetworks and other institutes in Heidelberg, the growing demands on bioimage
analysis often make a one-to-one analysis support difficult and less efficient. Bioimage
analysis training course is a way of offering solutions and ideas on how to use and com-
bine various tools to tackle common and practical problems, in order to narrow the gap
between software packages and users’ demands by increasing the image analysis literacy
of users . . .

This course aims at introducing some insights to different open source software tools,
and providing an impression of possible solutions for the same biological question using
these tools and their applicabilities. Specifically, Fiji and ilastik are used in this course,
the former being a widely used powerful tool and the latter an in-house interactive tool
using machine learning algorithms. Three example problems which are rather simple but
commonly seen in biological applications are presented, together with a few common
analysis and measurements. These exercises could be applied as proof of concept or fast
quality check for real problem. Please note that more thorough and accurate analysis tasks
often require more specific methods that are likely to involve more complex algorithms
and techniques.

The building of this textbook should be a continuous improving process and its con-
tents will hopefully grow as well. Current version is the first attempt therefore you may
find some errors or missing part. I apology for this potential inconvenience for you and
am grateful to have your comments and help in improving it.

This course is funded by CellNetworks. The instructors are: Dr. Kota Miura, Dr. Jürgen
Reymann, Dr. Anna Kreshuk, Dr. Burcin Erocal, Thorben Kröger, and myself. I would
like to thank Prof. Fred A. Hamprecht, Prof. Ulrich Schwarz, Prof. Thomas Höfer, Prof.
Michael Knop, Prof. Rob Russel for their support and suggestions on initializing this train-
ing course, which hopefully will become a regular event with continuous efforts. I would
also like to thank Dr. Ulrike Engel, Dr. Holger Erfle for sharing their experiences and prac-
tical suggestions, Dr. Peter Bankhead for reviewing the textbook, and Dr. May-Britt Becker,
Christine Hermann for their help in administration arrangements. Special acknowledge-
ment goes to EuBIAS Bioimage Data Analysis Course (http://eubias2013.irbbarcelona.
org/bias-2-course), which boosted this workshop . . .

iii

http://eubias2013.irbbarcelona.org/bias-2-course
http://eubias2013.irbbarcelona.org/bias-2-course

1
FIJI AND ILASTIK

C
H

A
P

T
E

R
1

—
F

IJI
A

N
D

IL
A

S
T

IK

A problem well put is half solved.

John Dewey

Part of ilastik general description was adapted from ilastik online documentation.

3

1.1 Aim

The aim of this session is to familiarise you with ImageJ/Fiji and ilastik. This introduction
session will be followed by three hands-on practical sessions on how to use these two tools
for analysis of microscopy data and we will have a closer look at different Fiji functions and
plugins, and several ilastik workflows.

1.2 Fiji

Fiji stands for “Fiji Is Just ImageJ". ImageJ is a public domain image processing and anal-
ysis program written in Java. It is freely available (http://imagej.nih.gov/ij/
index.html) and used by many scientists all over the world. There is a very active
ImageJ community and ImageJ is continuously improved. Fiji is a distribution of ImageJ
together with Java, Java 3D and a lot of plugins organized into a coherent menu structure.

During this session we will have an introduction on the use of ImageJ/Fiji for digital
image processing for life sciences, and also on how to write macros to analyze the data and
how to reuse code. So during the practical sessions you will write code using the macro
language but programming knowledge is not strictly required to follow the course.

Please refer to the homepage of Fiji for detailed documentation and user manual.
Additional handouts for the material used in this course will be distributed during the
session.

1.2.1 Installation and updates

After downloading Fiji installer, please follow the instructions from the Fiji page (http:
//fiji.sc/Installation) to install Fiji on your computer.

Fiji has an automatic update system invoked each time when you start Fiji, if there
are newly available updates. You can also configure your own updates by calling [Help
-> Update Fiji], and after checking for details, an ImageJ Updater window will
appear with the list of items to be updated or installed (Fig. 1.1 top). If you would like
to exclude/include specific items to be checked for update, or if you would like to add
new sites that are not listed, you could click Manage Update Site to configure them
(Fig. 1.1 bottom).

1.2.2 Plugins

Apart from the official plugins, there are many amazing plugins from a large community
contribution. Normally you need to download a specific plugin from their website, and
then copy it into the Fiji plugins folder. For example, for one plugin we will be using in this
course, 3D ImageJ Suite (a package of multiple plugins): we can install it by downloading
the bundle fromhttp://imagejdocu.tudor.lu/lib/exe/fetch.php?media=
plugin:stacks:3d_ij_suite:mcib3d-suite.zip and unzipping it in the plu-
gins folder. And when we restart Fiji, the plugin should be found at [Plugins -> 3D].

4

http://imagej.nih.gov/ij/index.html
http://imagej.nih.gov/ij/index.html
http://fiji.sc/Installation
http://fiji.sc/Installation
http://imagejdocu.tudor.lu/lib/exe/fetch.php?media=plugin:stacks:3d_ij_suite:mcib3d-suite.zip
http://imagejdocu.tudor.lu/lib/exe/fetch.php?media=plugin:stacks:3d_ij_suite:mcib3d-suite.zip

C
H

A
P

T
E

R
1

—
F

IJI
A

N
D

IL
A

S
T

IK

FIGURE 1.1: Fiji Updater.

1.3 ilastik: the interactive learning and segmentation toolkit

ilastik is a simple, user-friendly tool for image classification and segmentation in multiple
dimensions. Using it requires no experience in image processing. ilastik has a conve-
nient mouse interface for labeling an arbitrary number of classes in the images. These
labels, along with a set of image features, are then used to for a machine learning based
method to classifier image regions in different classes. In the interactive training mode,
ilastik provides real-time feedback of the current classifier predictions and thus allows for
targeted training and overall reduced labeling time. Once the classifier has been trained
on a representative subset of the data, it can be used to automatically process a very large
number of datasets. The plug-in functionality allows advanced users to add their own
problem-specific features, apart from the provided set of features based on color, edges,
and textures in the image.

During this session we will have an introduction on the use of ilastik workflows for
digital image processing for life sciences. So during the practical sessions you will get
familiar with interactively training the computer to process datasets according to your
likes with just a few labels.

5

1.3.1 Installation and updates

You can download the ilastik installers from here: www.ilastik.org/sfn. If you
have problems with installation, we will install it during an installation session together.
Additional libraries will be needed to be installed for some workflows, such as the tracking
workflow we will be using in Session 3.

1.3.1.1 Install CPLEX

Please note that ilastik will run even without IBM CPLEX installed, it is only a require-
ment for some workflows, e.g. the Counting and the Automatic Tracking workflows we
will use. Also, it is not sufficient to download the Trial version of CPLEX since its solver
can only handle very small problem sizes. Please make sure, the correct version is down-
loaded as described here.

IBM CPLEX is a commercial solver which is free for academic use. To apply for an
academic license, the user first needs to apply for an academic membership at IBM. De-
tails may be found on the IBM Academic Initiative website (http://www-03.ibm.
com/ibm/university/academic/pub/page/membership). Please note that it
might take some days until the application gets approved by IBM. After the academic
membership has been approved, the user can download IBM CPLEX. To do so, the steps
on this IBM website may be followed. An installation instruction can be found on the
ilastik website as well. Please make sure to download the version with which current ilastik
works.

Windows There are typically no further modifications needed after installing CPLEX by
double clicking the “cplex_studio1251.win-x86-64.exe". After a successful installation, the
Automatic Tracking Workflow is displayed on the Start-Screen of ilastik.

However, if this workflow is not present, something went wrong with the CPLEX in-
stallation. First, please double check whether you indeed installed the correct version
that your current ilastik uses. If this is the case, as a workaround, you may copy the
files libcplex.dll, libilocplex.dll, and libconcert.dll from the CPLEX
installation directory into the library folder of ilastik, e.g. C:/ProgramFiles/ilasti
k/lib.

Linux To install CPLEX, go to the folder where you have “cplex_studio1251.linux-x86-
64.bin", then install it with the command line:

1 sh cplex_studio1251.linux-x86-64.bin

:

Unfortunately, CPLEX packages do not provide shared versions of all required libraries,
but only static variants. Some manual work needs to be done here. You have to navi-
gate to the installation folder of CPLEX and therein to the static libraries libcplex.a,
libilocplex.a, and libconcert.a (usually located in ILOG/CPLEX_Studio1
25/cplex/lib/x86-64_sles10_4.1/static_pic and ILOG/CPLEX_Studi

6

www.ilastik.org/sfn
http://www-03.ibm.com/ibm/university/academic/pub/page/membership
http://www-03.ibm.com/ibm/university/academic/pub/page/membership

C
H

A
P

T
E

R
1

—
F

IJI
A

N
D

IL
A

S
T

IK

o125/concert/lib/x86-64_sles10_4.1/static_pic) to run the following
commands to link shared CPLEX libraries from the static versions:

1 g++ -fpic -shared -Wl,-whole-archive libcplex.a -Wl,-no-whole-archive -o
libcplex.so

g++ -fpic -shared -Wl,-whole-archive libilocplex.a -Wl,-no-whole-archive -o
libilocplex.so

3 g++ -fpic -shared -Wl,-whole-archive libconcert.a -Wl,-no-whole-archive -o
libconcert.so

:

Finally, these shared libraries need to be copied into the library folder of the ilastik instal-
lation, e.g. ilastik/lib.

Mac OSX To install CPLEX, open a Terminal, then go to the folder where you have stored
“cplex_studio1251.osx.bin", then install it with the command line:

1 bash cplex_studio1251.osx.bin

:

Similar to Linux, CPLEX packages for Mac do not provide shared versions of all required
libraries, but only static variants. Unfortunately this is the platform that may need more
work, because there are different ways to create shared libraries for CPLEX on Mac OSX
depending on the operating system version and compiler type. In all cases, you need
a compiler installed. You can check whether you have already a compiler installed by
running the following command in a terminal :

1 gcc --version

:

If no compiler is installed, choose what to do depending on your OSX version:

• For all OSX < 10.9, so up to Mountain Lion, this means that you need to install
XCode from the Apple Store. Then you need to go to XCode’s [Preferences ->
Downloads] tab, and install the command line tools.

• For OSX 10.9 Mavericks it suffices to install the command line tools using the fol-
lowing command lines without installing XCode, but you need to accept the XCode
license when running the second line:

1 xcode-select --install
sudo gcc

3

:

Now we have the preliminaries to create the shared libraries. This depends on the
compiler type and operating system. To find your compiler version, run

7

gcc --version

:

and look at the output. This should be either GCC 4.2.1, or Apple LLVM (clang). The
folders used to specify the location of the libraries in cases involving clang depend on
whether you installed from “cplex_studio1251.macos.bin" or “cplex_studio1251.osx.bin".
So choose the appropriate commands below to create the shared libraries for your laptop
configuration. Note that if you installed CPLEX from “cplex_studio1251.macos.bin" , you
need to replace “x86-64_osx" by “x86-64_darwin".

• If you have GCC 4.2.1 and OSX version < 10.9

1 cd ~/Applications/IBM/ILOG/CPLEX_Studio1251/concert/lib/x86-64_osx/
static_pic

g++ -fpic -shared -Wl,-all_load libconcert.a -Wl,-noall_load -o
libconcert.dylib

3

cd ~/Applications/IBM/ILOG/CPLEX_Studio1251/cplex/lib/x86-64_osx/
static_pic

5 g++ -fpic -shared -Wl,-all_load libcplex.a -Wl,-noall_load -o
libcplex.dylib

7 g++ -fpic -shared -Wl,-all_load libilocplex.a -Wl,-noall_load -o
libilocplex.dylib

:

• If you have Clang and OSX version < 10.9, then you need to supply the symbols of
cplex and concert when building libilocplex.dylib

1 cd ~/Applications/IBM/ILOG/CPLEX_Studio1251/concert/lib/x86-64_osx/
static_pic

g++ -fpic -shared -Wl,-all_load libconcert.a -Wl,-noall_load -o
libconcert.dylib

3

cd ~/Applications/IBM/ILOG/CPLEX_Studio1251/cplex/lib/x86-64_osx/
static_pic

5 g++ -fpic -shared -Wl,-all_load libcplex.a -Wl,-noall_load -o
libcplex.dylib

7 g++ -fpic -shared -Wl,-all_load libilocplex.a -Wl,-noall_load -L
.:../../../../concert/lib/x86-64_osx/static_pic -lcplex -lconcert -
o libilocplex.dylib

:

• If you have Clang and OSX version 10.9 Mavericks, you need toto specify the correct
C++ standard library to use in addition to the commands above

8

C
H

A
P

T
E

R
1

—
F

IJI
A

N
D

IL
A

S
T

IK

1 cd ~/Applications/IBM/ILOG/CPLEX_Studio1251/concert/lib/x86-64_osx/
static_pic

g++ -fpic -shared -Wl,-all_load libconcert.a -Wl,-noall_load -stdlib=
libstdc++ -o libconcert.dylib

3

cd ~/Applications/IBM/ILOG/CPLEX_Studio1251/cplex/lib/x86-64_osx/
static_pic

5 g++ -fpic -shared -Wl,-all_load libcplex.a -Wl,-noall_load -stdlib=
libstdc++ -o libcplex.dylib

7 g++ -fpic -shared -Wl,-all_load libilocplex.a -Wl,-noall_load -L. -L
../../../../concert/lib/x86-64_osx/static_pic -lcplex -lconcert -
stdlib=libstdc++ -o libilocplex.dylib

:

Now copy those files to your ilastik installation into the lib folder. On Mac this works by
right-clicking on ilastik.app, choose Show package contents, and place the three
libraries in Contents/Frameworks. Some last steps are required. Please copy and paste the
following lines in Terminal:

1 cd /Applications/ilastik.app/Contents/Frameworks
install_name_tool -id @executable_path/../Frameworks/libcplex.dylib libcplex

.dylib
3 install_name_tool -id @executable_path/../Frameworks/libconcert.dylib

libconcert.dylib
install_name_tool -id @executable_path/../Frameworks/libilocplex.dylib

libilocplex.dylib
5 install_name_tool -change libcplex.dylib @executable_path/../Frameworks/

libcplex.dylib libilocplex.dylib
install_name_tool -change libconcert.dylib @executable_path/../Frameworks/

libconcert.dylib libilocplex.dylib

:

Finally, these shared libraries need to be copied into the library folder of the ilastik instal-
lation, e.g. ilastik/lib.

1.4 Resources

Fiji related:

• CMCI ImageJ Course page: http://cmci.embl.de/documents/ijcourses

• CMCI Macro programming in ImageJ Textbook: https://github.com/cmci/
ij_textbook2/blob/master/CMCImacrocourse.pdf?raw=true

• Fluorescence image analysis introduction:http://blogs.qub.ac.uk/ccbg/
fluorescence-image-analysis-intro/

• mailing list: imagej@list.nih.gov

9

http://cmci.embl.de/documents/ijcourses
https://github.com/cmci/ij_textbook2/blob/master/CMCImacrocourse.pdf?raw=true
https://github.com/cmci/ij_textbook2/blob/master/CMCImacrocourse.pdf?raw=true
http://blogs.qub.ac.uk/ccbg/fluorescence-image-analysis-intro/
http://blogs.qub.ac.uk/ccbg/fluorescence-image-analysis-intro/
mailto:imagej@list.nih.gov

ilastik related:

• ilastik homepage: http://ilastik.org/sfn

• mailing list: ilastik-user@ilastik.org

Bioimage related:

• BioImage Information Index: http://biii.info/

10

http://ilastik.org/sfn
mailto:ilastik-user@ilastik.org
http://biii.info/

2
COUNTING SPOTS

C
H

A
P

T
E

R
2

—
C

O
U

N
T

IN
G

S
P

O
T

S

Not everything that counts can be counted, and
not everything that can be counted counts.

William Bruce Cameron

Part of ilastik general description was adapted from ilastik online documentation.

13

2.1 Aim

In this session, we will count spots in image regions, with two different methods using Fiji
and ilastik.

2.2 Introduction

In microscopy images, counting the number of objects is a rather common practice. When
the density of objects in the image is low and the objects are well separated from each
other, it is possible to count objects by first segmenting the objects and then perform a
morphological operation called connected components analysis. However, as the density
of the objects increases, such approach underestimates the number of objects due to
under-segmentation of clustered objects.

Dataset In this session, we will use the example image, Hela cells, in the Session2 folder
of the course material. You can also find it directly from Fiji sample data. This is a 16-
bits/channel composite color image of Hela cells with red lysosomes, green mitochondria
and blue nucleus. We will count the number of lysosomes in the whole image, find their
distributions in e.g. cell nucleus or user-defined regions of arbitrary shape.

2.3 A Fiji solution

Before doing anything with Fiji, let’s first turn on the later-to-be your favorite function
ImageJ command recorder (Plugins -> Macros -> Record). It magically records
operation you will be doing with Fiji, which can be turned into a macro script either directly
or with some modifications.

If you would like to get the image directly from Fiji, then click on [File->OpenSam
ples->HelaCells]. Since we are interested in counting red lysosomes spots (Fig. 2.1),
lets first split the channels using [Image -> Color -> Split Channels]. Or, just
open the C1-hela-cells.tif from the session folder.

FIGURE 2.1: (left) The lysosome channel of the Hela cells image from Fiji sample data. (middle)
estimated background using Gaussian smoothing. (right) The original image after subtracting the
background estimate.

14

C
H

A
P

T
E

R
2

—
C

O
U

N
T

IN
G

S
P

O
T

S

2.3.1 Detecting objects

2.3.1.1 Detecting and counting nucleus

Let’s first select the nucleus channel image C3-hela-cells.tif (Fig. 2.2), since we
are interested in the lysosomes inside the cell nucleus. This is a relatively “clean" image,
to detect the nucleus we can try just thresholding and play with different methods and
choose the best one, e.g. Triangle. Notice that the thresholded binary image is most
likely not exactly what we want, but with small objects and possibly holes (Fig. 2.3). In
such situations, a morphological opening operation can be used to clean up small ob-
jects. And for filling holes, a morphological closing operation can do the job. In this
case, we need morphological opening, which is completed in two steps: a [Process
-> Filters -> Minimum] followed by a [Process -> Filters -> Maximum].
In order to bring the object shape back to its original size, the Radius value for both
filters should take the same value, e.g. 5.0 for this image. We can rename the image as
“nucleus_mask".
Question: How the operations of morphological closing can be done?

FIGURE 2.2: Nucleus channel FIGURE 2.3: Thresholded FIGURE 2.4: Cleaned mask

Now we can count the nucleus using [Analyze -> Analyze Particles], even
though it is pretty easy to check by eye that there are 4 nucleus. We will set the options
Size, Circularity, Show to: 0-Infinity, 0-1, and Count Masks, respectively,
and verify thatAdd to Manager is unchecked whileIn situ Show is checked. Then
we can click OK. In order to visualize the counted objects better, we could change the
lookup table (LUT) option, using [Image -> Lookup Tables] options. If you like,
we can also use the LUT file provided in your Session2 folder, “Random.lut". It should be
copied to the ImageJ LUT folder. Once copied you should be able to find it in the Lookup
Tables list and apply it (see Fig. 2.4). This is because when the option Count Masks is
chosen, the mask image will result in an image with a different pixel value for each object.
If we toggle the mouse cursor in the object regions, we will find their values, or object
label or ID, displayed in the main Fiji menu. In this case, they should be 1-4 (and with zero
background).

2.3.1.2 Detecting lyososome spots

In the image C1-hela-cells.tif, the blob-like highly-contrasted lysosomes spots
exist in some cloud-shape background. So the first step is to estimate and subtract the

15

background. Since we need to subtract images, let’s first make a copy of the image by
running [Image -> Duplicate]. A typical approximation of such background is a
much smoothed version of the image. So we could try the following choices and see which
suits the best:

• run a Gaussian smoothing ([Process -> Filters -> Gaussian Blur]) with
a large Sigma value (e.g. 6.00) on the duplicated image.

• apply a morphological opening to the image. This operation is done through a Min-
imum filter ([Process -> Filters -> Minimum]) followed by a Maximum
filter ([Process -> Filters -> Maximum]) with the sameRadius (e.g. 6.00).
These filters have a Preview mode, which is helpful for choosing the satisfactory
parameter(s) for the filters.

Once having a good approximation of the background, we can subtract it from the original
image using [Process -> Image Calculator] with Subtract Operation. Al-
ternatively, instead of first estimating and then subtracting background from the original
image, we can also run [Process -> Filters -> Unsharp Mask] with a small
Sigma value (e.g. 1.00) and large Mask Weight value (e.g. 0.9) directly. And we should
be able to remove quite some cloud-like background signal and enhance signals of lyso-
somes.

Next, we will extract objects from the resultant “background-free" image. A first try
can always be getting the binary mask after a thresholding. For example, we can try
[Image -> Adjust -> Threshold] with theOtsumethod or other ones. And then
click Apply after we are satisfied with the thresholding to get a binary mask image. We
could see that from this image (Fig. 2.5 left), some spatially close spots are connected
and thus regarded as one object. So we would need to correct this undersegmentation
behavior. One common solution is to run [Process -> Binary -> Watershed].
As we see in Fig. 2.5 middle, it separates some clustered spots (indicated in red circles)
by a line with one-pixel width. It should be noted that the watershed method does not
always do the magic, and it works better for objects with more regular shapes and sizes.
After we managed to create a mask with one separate object for each spot, we could start
identifying each object. First, let’s run [Analyze -> Analyze Particles], After
verifying whether Size, Circularity, Show options are set to: 0-Infinity, 0-1,
and Nothing, respectively, and also Add to Manager is checked, then we can click
OK. A new window similar to Fig. 2.5 right should appear. The numbers indicate the object
(or ROI) ID. Let’s rename this image as e.g. “spots" using [Image -> Rename]. And in
the ROI Manager window we can find the list of all objects.

2.3.2 Counting spots

We will practice counting the spots that we just extracted from the lysosomes channel in
two types of regions: nucleus and regions enclosed by mitochondria.

16

C
H

A
P

T
E

R
2

—
C

O
U

N
T

IN
G

S
P

O
T

S

FIGURE 2.5: (left) The binary mask obtained from thresholding the background subtracted image.
(middle) The binary mask after applying a watershed operation so as to separate obvious connected
spots. (right) The labeled objects in the binary mask.

2.3.2.1 counting spots in nucleus

The trick to achieve this is to apply the lysosome ROIs to the counted nucleus mask
image, and then check the intensity of each ROI in this mask image, since the back-
ground and the four nucleus have different IDs. So let’s first go to [Analyze -> Set
Measurements] and check only the Min & max gray value and uncheck the rest.
Because we are interested in the maximum intensity value in each ROI.
Question: Why are we interested in the maximum intensity value in each ROI?
We need to select the “nucleus_mask" window, and highlight all the listed lysosome ROIs
in theROI Managerwindow. Then apply [Image -> Overlay -> From ROI Manager].
Your nucleus mask image should look like Fig. 2.6.

Then we can measure the parameters we just set, by clicking Measure in the ROI
Manager window. The Results window is shown with three columns: object/ROI ID,
minimum intensity and maximum intensity. Now if we click [Results -> Distribution]
in the same Results window, and select Max as Parameter, and set specify bins
and range to 5 and 0-5, respectively, a Max Distribution window should appear
(see Fig. 2.7) with five bins/bars, whose heights indicate the number of ROIs with their
maximum intensity value between the range of each histogram bin. As we know that the
mask has intensity range 0-4, if the histogram bins are chosen such that each bin represents
the intensity range for each nucleus and the background (i.e. 1 intensity level per histogram
bin in this case), the histogram does the counting for us. That’s the reason for specified
values for bins and range.

In order to see the exact number of each counts, we can click List in the histogram
window, and a two-column table similar to Fig. 2.7 will appear with the intensity value
column indicating the nucleus ID, and the count column showing the number of ROIs.

2.3.2.2 counting spots in regions where mitochondria also presents

Similarly, if we are interested in counting spots in the regions covered by mitochondria,
we can perform similar steps but on the mitochondria channel (C2-hela-cells.tif).

17

FIGURE 2.6: Nucleus mask & spot ROIs. FIGURE 2.7: Histogram & counts in nucleus.

FIGURE 2.8: The mitochondria channel with manual selected region of interest.

FIGURE 2.9: Nucleus mask & spot ROIs. FIGURE 2.10: Histogram & counts in mitochondria.

18

C
H

A
P

T
E

R
2

—
C

O
U

N
T

IN
G

S
P

O
T

S

Instead of using some filters to extract such regions, we will practice with manually draw-
ing a contour of the region of interest using theFreehand selections tool (see Fig. 2.8).
In previous steps, the counting was done through computing histogram from the labeled
mask image. Similarly, a mask image is needed here. So we will create a new mask image
from the manual selection. There are many options to do so, and a few of them are listed
below:

• A new image of the same size is created using [File -> New -> Image] and
renamed as “mito_mask". It will create a black image, and when we run [Edit->S
election->RestoreSelection], the manually drawn region contour on the
mitochondria channel will be “translated" to the new image. Then the pixel values
inside this region should be modified to distinguish it from the dark background,
using:

– the command [Edit -> Fill]. The filled region will have a value higher
than the zero background, e.g. 85 (see this image in Fig. 2.9).

– the command [Process -> Math -> Add], and we can decide which value
to add to the new image for the selected region.

• After manually drawn region, we run [Edit->Selection->CreateMask], a
new binary image with the same dimension is created, with the manually drawn
region highlighted (i.e. 255) and the rest being 0.

The next steps are similar to what we have done in the previous section thus please
refer to it for detailed descriptions. One example result is shown in Fig. 2.10. Please note
that since there are only two values in the image (0 and 85), then we could have many
histogram bin distribution options, as long as 0 and 85 are in separate bins.

In case of multiple regions to be measured, we could hold the “shift" key while drawing
multiple regions, and then run [Edit->Selection->CreateMask]. Or use [Process
-> Math -> Add] each time after drawing one region. If different values are added for
each region, then a labeled mask image is created directly.

2.3.3 Convert the recorded commands into a macro script

We will clean up the commands recorded from the beginning so as it becomes a reusable
macro script for other datasets. Actually if it makes things easier, you could clean it parts
by parts throughout the recording period, which we will be doing so during the session.
Cleaning up mostly involves: deleting mistaken commands, specifying selections like se-
lected windows or images, replacing certain parameter settings by variables with values
specified once manually or through programming. We will gradually practice this during
the whole course.

The macro code obtained and cleaned up from the ImageJ command recorder (Plugins
-> Macros -> Record) is provided in the Session2 folder.

19

2.4 ilastik solution

2.4.1 ilastik Density Counting workflow

We will use the Density Counting workflow to solve our problem. The purpose of this
workflow is to enable counting the number of objects in crowded scenes such as cells (or in
this case, spots) in microscopy images. Counting is performed by directly estimating the
density of objects in the image without performing segmentation or object detection.
This workflow offers a supervised learning strategy to object counting that is robust to
overlapping objects. It is appropriate for counting many blob-like overlapping objects
with similar appearance (size, intensity, texture, etc..) that may overlap in the image
plane.

In order to avoid the difficult task of segmenting each object individually, this workflow
implements a supervised object counting strategy called density counting. The algorithm
learns from the user annotations a real valued object density. Integrating over a suffi-
ciently large image region yields an estimate of the number of objects in that region. The
density is approximated by a normalized Gaussian function placed on the center of each
object. The user gives annotations in the form of dots (red) for the object centers and
brush-strokes (green) for the background. A pixel-wise mapping between local features
and the object density is learned directly from these annotations. Only the training im-
age(s) requires manual labeling, and the counting on the entire training image(s) can be
predicted. The full prediction on a large dataset can be done via Batch Processing Data
Selection. But we will not discuss it here, please follow the steps from the ilastik online
tutorial.

It is important to note that:

• The object density is an approximation for the true integer count. The estimates are
close to the true count when integrated over sufficiently large regions of the image
and when enough training data is provided.

• Contaminations of the image such as debris or other spurious objects may invali-
date the estimated density.

• The current version of the Counting workflow is limited to handling 2D data only.

Please refer to the ilastik website or [1] for further details.

2.4.2 Training and predicting density

As a first step after starting ilastik user interface, let us Create New Project of
Counting and add the example image C1-hela-cells.tif.

The second step is to define some features at the Feature Selection applet. In
particular, blob-detectors like the Laplacian of Gaussians or line-detectors like the Hes-
sian of Gaussians are appropriate for blob like structures. One way of checking this is
by viewing the response of each selected feature of specific size. This can be done by
clicking the corresponding one in the Features panel at the bottom-left of the ilastik

20

C
H

A
P

T
E

R
2

—
C

O
U

N
T

IN
G

S
P

O
T

S

window. The features that can be used in this example image is shown in Fig. 2.11, the
Select Features window. For further details on feature selection please refer to the
online ilastik user manual.

FIGURE 2.11: ilastk Select Features window.

The next step is to annotate, or label in the Counting panel. Annotations are done
by painting while looking at the raw Input Data and at the intermediate results of the
algorithm. The result of this algorithm can be interactively refined by activating Live
Update mode. It offers possibilities to add dots for the object instances, brush strokes
over the background, and boxes to monitor the count in sub-image regions.

To begin placing dot annotations select the red Foreground label and then click on
the image. The annotation has to be placed close to the center of an object as in Fig. 2.12.

Given the dotted annotations, a smooth training density is computed by placing a
normalized Gaussian function centered at each dot. The scale of the Gaussian is a user
parameter Sigma which should roughly match the object size. To help deciding an ap-
propriate value for this parameter you will see that the size of the crosshair-cursor changes
accordingly to the chosen sigma (in the left panel). It can be visually inspected through
the density shown in the LabelPreview layer in the bottom-left panel. An example of
different choices for the parameter Sigma is shown in Fig. 2.13. On the left image, the
value of sigma is chose too small, while on the right the value of sigma is too large. The
center image shows a well chosen sigma. Please note that large values for Sigma (e.g. >5)
can impact the required computation time, thus it is better to consider using a different
approach, such as the Object Classificationworkflow. But this is not the case for
our session.

After a few dots have been placed (say around 10 - 20 depending on the data) we can
add training examples for the background. To activate the background labeling interac-
tion select the green Background label and place broad strokes on the image (Fig. 2.12),
marking unimportant areas or regions where the predicted density should be 0.

After some labels for the objects and the background have been given, a first prediction

21

FIGURE 2.12: User annotations as training examples.

FIGURE 2.13: Select the Sigma values.

can be triggered by switching the Live Update on, and displayed in the Prediction
layer (Fig. 2.14). Please note that if the Live UpdateMode is active, every single change
in the training data (e.g. placing new labels or changing parameters) causes a new predic-
tion - thus it may be faster to set it OFF again when you plan for extensive modifications.

2.4.3 Counting objects/spots

2.4.3.1 Counting using Box in ilastik

The boxes are operator windows that integrate the density over the user-defined rectan-
gular image region. Therefore they provide the predicted counts for the objects in that
region. This interaction can only take place when the Live Update mode is activated.

22

C
H

A
P

T
E

R
2

—
C

O
U

N
T

IN
G

S
P

O
T

S

FIGURE 2.14: Prediction.

You can start placing boxes by selecting theAdd Box button in the Counting panel and
drawing a rectangular region on the image from the top left to the bottom right. The new
box will be added automatically to the Box List. Boxes show the object count for the
region on the upper left corner and each of them are displayed in a different color, which
correspond to the color tag in the Box List (Fig. 2.15).

Boxes can be:

• Selected and Moved: you can select a box by its name in the Box List or just
pass over it with your mouse. For the latter case, its name in the Box List is
highlighted. The box will change color once selected. A box can be dragged in a
different position by clicking and moving the mouse while pressing the Ctrl key.

• Resized: when selecting a box it will show 2 resize handles at its right and bottom
borders.

• Deleted: to delete a box either click on the delete button (a red cross) on the Box
List or press Del while selecting the box

• Configured: you can configure the appearance (color, fontsize, fontcolor etc. . .) of
each individual box (or of all boxes at the same time), by clicking on the colored
rectangle in the Box List. The interaction dialog for the box properties is shown
below.

23

FIGURE 2.15: Counting in multiple user-selected box regions.

You can repeat the steps of adding boxes and provide new annotations (dots or strokes)
for object centers and background until you are satisfied with the counting results for the
boxes.

If we have added a set of images of the same kind and size as the training image, we
can switch to another image by using the Current View menu on the left. Since the
algorithm is already trained, then we are ready to compute the density for this new image.
Similar as before, it is possible to start the prediction by toggling the Live Update
button and monitor the results with a large box covering the entire image. Or we can
also press the Update total density button on the left in the Counting panel.
This button estimates the predicted count for the entire image. If the training labels are
sufficient, we should obtain a count similar to what is shown in the image below that
matches the number of objects in the images. In a real world scenario, you may need
to distribute several annotations across many images to obtain accurate counts for all the
images in the dataset.

You are now ready to use the workflow on your data! Please continue to read ilastik
online manual if you want to know some advanced features.

Additionally, for those who are interested in testing different datasets and batch pro-
cessing, a few more example datasets are also available in the Session2 folder. In par-
ticular, the “SimuCells" folder contain a few highly-realistic synthetic emulations of flu-
orescence microscopic images of bacterial cells, using the system [2]. Larger numbers

24

C
H

A
P

T
E

R
2

—
C

O
U

N
T

IN
G

S
P

O
T

S

of such images can be downloaded from: http://www.robots.ox.ac.uk/~vgg/
research/counting/cells.zip.

2.5 Counting in Fiji from ilastik predictions using arbitrary shapes

You may have already noticed that in ilastik, it is only possible to count in regions defined
by a rectangular box. In this section, we will extend counting measurements to arbitrary
shapes. This is done by exporting the ilastik density prediction results as e.g. Tiff images
and then performing the measurements in Fiji.

FIGURE 2.16: Exporting option window.

The prediction results can be directly exported by a right click on the Prediction
layer then choose Export. In the popup Image Export Options window, set at the
Output File Info -> Format pulldown list the tif option (Fig. 2.16), and then
select the desired folder and filename to save it. You can also go to theDensity Export
panel and click on Choose Settings, a similar window will show up, but this time all
the images will be save at once! So if you have multiple images added in the project and
predicted, you should select the tif sequence option at the Output File Info
-> Format pulldown list. In case of batch processing, similar operations could be done
at the Batch Prediction panels.

Now we can open in Fiji the prediction tiff image you saved just now. Then we could
use the selection tools in Fiji to draw the outline of the region of interest in arbitrary shape,
with e.g. the Freehand tool. After the region is drawn and selected, the counting can be
calculated by integrating the intensity values in the prediction image. We need to run

25

http://www.robots.ox.ac.uk/~vgg/research/counting/cells.zip
http://www.robots.ox.ac.uk/~vgg/research/counting/cells.zip

FIGURE 2.17: Counting spots in arbitrary region.

[Analyze -> Set Measurements] and select Integrated density, and then
[Analyze -> Measure]. In the Results table window, the count value is shown at
the column IntDen. Fig. 2.17 shows a region containing similar spots as the green large
box region in Fig. 2.15. As we could see, they have similar counts, 79.44 vs 79.8.

You can also count spots in multiple regions, e.g. the nucleus regions that we have ob-
tained previously from the blue nucleus channel. To take multiple regions from one image
and analyze the same region in another, we know that Fiji offers “ROI Manager" for that.
From the mask image of the blue nucleus channel (we did this in previous section 2.3.1.1),
we can run [Analyze -> Analyze Particles], select Show Nothing and Add
to Manager. Now we will select the ilastik prediction image, since we will count from it,
and then run [Image -> Overlay -> From ROI Manager], we should be able to
see the ROIs overlaid on the prediction image, as shown in Fig. 2.18. If only one region is to
be measured, a quicker option, [Edit -> Selection -> Restore Selection],
can be used as well. Now we can click Measure button in the ROI Manager window,
the Results table window should look like Fig. 2.18, with the four counts in the IntDen
column.

Compared to the results using Fiji (Fig. 2.7), the counting values obtained from these
two methods may not be consistent. One reason is the possible under-segmentation of
the objects. But when we look at the images in Fig. 2.7 and Fig. 2.18, we could see that
the missing spots in Fig. 2.7 are the ones that have lower density (i.e. blueish) values in
Fig. 2.18. This suggests that some dim spots are not present using the method we did

26

C
H

A
P

T
E

R
2

—
C

O
U

N
T

IN
G

S
P

O
T

S

FIGURE 2.18: Counting spots in cell nucleus.

in Fiji. One reason causing this observation could be, by subtracting the approximated
background, dim spots remained with even lower intensities and thus likely filtered away
after thresholding to get the binary mask.

2.6 Tips and tools

• Search for commands in Fiji: select Fiji general interface, then hit the “L" key (or
sometimes in MAC OS “command+L" key)

• ImageJ command recorder: Plugins -> Macros -> Record

• Official ilastik website: https://www.ilastik.org (too be updated very soon)

2.7 Groups close by which work on similar problems

• Prof. Fred Hamprecht’s group, Multidimensional Image Processing Group (http:
//hci.iwr.uni-heidelberg.de/MIP/), located at HCI, Speyererstr. 6

27

https://www.ilastik.org
http://hci.iwr.uni-heidelberg.de/MIP/
http://hci.iwr.uni-heidelberg.de/MIP/

2.8 References

[1] L Fiaschi, R Nair, U Koethe, and F A Hamprecht. Learning to count with regression forest and
structured labels. In Proceedings of the International Conference on Pattern Recognition (ICPR
2012), 2012.

[2] A Lehmussola, P Ruusuvuori, J Selinummi, H Huttunen, and O Yli-Harja. Computational Frame-
work for Simulating Fluorescence Microscope Images with Cell Populations. IEEE Transactions
on Medical Imaging, 26(7):1010–1016, 2007.

28

3
2D+TIME TRACKING

C
H

A
P

T
E

R
3

—
2

D
+

T
IM

E
T

R
A

C
K

IN
G

If it is not fast, we lose interest, after all if we can
not become a millionaire in 365 days, we may
lose interest in becoming one at all . . .

NOT!

Christopher Jansen

Part of ilastik general description was adapted from ilastik online documentation.

31

3.1 Aim

In this session, we will perform 2D+time tracking on objects of interest with two different
methods: Fiji and ilastik. And further tracking results analysis of plotting trajectory on
image and drawing displacement or velocity plot will also be done using Fiji.

3.2 Introduction

Time-lapse experiments play a crucial role in current biomedical research on e.g. sig-
naling pathways, drug discovery and developmental biology. Such experiments yield a
very large number of images and objects such as cells, thus reliable cell tracking in time-
lapse microscopic image sequences is an important prerequisite for further quantitative
analysis.

Dataset The dataset we will use (“mitocheck_small.tif") is kindly provided by the pub-
licly available database of the MitoCheck project (http://www.mitocheck.org/).
One of the focuses of the MitoCheck project is on accurate detection of mitosis (cell divi-
sion). Please refer to [2] for more details of this project.

3.3 a Fiji solution

Let’s load the “mitocheck_small.tif" 2D+time image. The very first step is to segment, or
identify, objects (cell nucleus in this case) in each time frames. This step can be done by
first smoothing a bit the stack to homogenize a bit the intensity within each object using
[Process -> Filters -> Gaussian Blur] by a Sigma value of e.g. 2.0. Please
note that although we are smoothing the whole stack, this 2D filter applies to each slice, or
time frame, independently. Since the background is quite clean, a simple thresholding is
probably good enough to segment the objects. You can choose your favorite thresholding
method and set the best threshold value, e.g. with the Default or the Moments method,
and with min and max threshold value set to 15 and 255, respectively. Probably there will
be merged objects, so we can run [Process -> Binary -> Watershed] to split the
most obviously wrongly-merged ones. We could also run [Process -> Filters ->
Minimum] with Sigma of 1.0 to shrink a little bit the obtained binary mask. This is to avoid
merging of close neighboring objects in 3D in further steps, and also to correct possible
dilation of objects due to the Gaussian blur filter. If we wish, a second Watershed operation
can be applied afterwards to further split potential wrong merges.

Suppose that we have so far obtained a binary stack containing the segmented cell
nucleus. Next, we will track, or link, the same object in consecutive time frames. The
final result will be a label stack where each object is identified (filled) by a unique label
along time (indicated by a distinct gray level intensity value). The strategy we employ
here is based on the overlap of the same object in temporal space between two con-
secutive time frames. If we consider time as the third dimension, cell spatial overlap
along time translates to the connected parts in the third dimension of a 3D object. And
Fiji’s [Analyze -> 3D Objects Counter] does the job of finding such connected

32

http://www.mitocheck.org/

C
H

A
P

T
E

R
3

—
2

D
+

T
IM

E
T

R
A

C
K

IN
G

FIGURE 3.1: An example MitoCheck image (first frame) and the first five frames of the tracked
objects (in different colors), using our Fiji solution, overlaid on the original image stack.

components in 3D. This function works similarly as the 2D one we are familiar by now -
[Analyze -> Analyze Particles]. It can identify and count 3D objects in a stack,
quantify each object’s properties (see the full list in [Analyze -> 3D OC Options])
in a table, and generate maps of specified results representations. Once the 3D objects
are 3D labeled, we can apply the Random LUT in the [Image -> Lookup Tables]
to visualize better individual objects. We could also merge the label stack with the origi-
nal stack to check results, using [Image -> Color -> Merge Channels]. You can
specify the two stacks in two of the available channels. And by unchecking the option
"Ignore source LUT", it allows keeping the random LUT in the label channel thus
colored IDs after merging. In Fig. 3.1 the first five frames of the objects (with their identity
labels shown in random color) are shown.

Please note that the method we use here works properly only in cases: where single
objects has spatial overlap in temporal space between any two consecutive time frames;
and also a single object at a later time point does not overlap multiple objects at an ear-

33

lier time point. If there is no overlap, or connection between two consecutive frames, then
a new label will be assigned to the same object in the latter frame, since it is considered
as another object just showing up. One example can be found in Fig. 3.1. The two objects
colored in orange and purple at the upper right corner of the last frame are split from the
purple one in the previous frame. So both should haven been assigned the same identify
(i.e. purple), but since the orange one has no overlap with its previous time frame, a new
identity is assigned instead.

3.3.1 Other possibilities to solve tracking problem

An alternative to the 3D Object Counter could be Plugins -> Process -> Find
Connected Regions. It sometimes could be faster than the 3D Object Counter and
sometimes has better options (like starting from a point selection), but also lacks some
flexibility.

There are other advanced tracking tools (included in Fiji or downloadable as Fiji Plug-
ins) available such as [Plugins -> Mosaic -> Particle Tracker 2D/3D]1 and
[Plugins -> Tracking -> TrackMate]. These trackers are however optimized
for spot-like particle tracking, the linking is hence performed over a list of spot positions
(spots detected in each frame). The tracking can be either straightforward (e.g. linking a
spot to the closest spot in the next frame), or with algorithms that can handle cases when
splitting and merging events occur.

If the cells, or objects of interest, resemble ellipsoids and are sufficiently separated
these trackers might perform well provided the parameters are properly adjusted. For
a densely packed scenario, or for more irregular object shapes, a possible strategy is to
firstly perform a specific segmentation and generate a map showing for instance the ob-
jects centroids, and then apply the spot tracker on the centroids maps. For those who
are interested in, an example on multicellular movement in Drosophila with detailed ex-
planation can be found in the BioImage Data Analysis Course at EuBIAS 2013 (http:
//eubias2013.irbbarcelona.org/bias-2-course).

3.4 ilastik solution

Before we start, please note that the main ilastik workflow we will be using in this session
- the Automatic Tracking workflow - only works on machines where CPLEX is installed
additional to ilastik.

The fully automatic tracking workflow is able to track multiple (dividing) objects in
presumably big datasets, both in 2D+time and 3D+time. But in this session, we will only
deal with 2D+time data.

3.4.1 Segmentation with ilastik Pixel Classification workflow

The tracking workflow works on object level (rather than pixel by pixel) thus needs either
results from the Pixel Classification workflow or segmented images from other sources.

1download site: http://mosaic.mpi-cbg.de/Downloads/Mosaic_ToolSuite.jar

34

http://eubias2013.irbbarcelona.org/bias-2-course
http://eubias2013.irbbarcelona.org/bias-2-course
http://mosaic.mpi-cbg.de/Downloads/Mosaic_ToolSuite.jar

C
H

A
P

T
E

R
3

—
2

D
+

T
IM

E
T

R
A

C
K

IN
G

We choose to practice the former.
When using Pixel Classification workflow, the user segments foreground objects (e.g. cells)

from background by defining two labels and providing examples through brush strokes.
We will just provide a brief description of this workflow, as we already had a demo in the
general ilastik session and are using this workflow throughout the whole course.

Load time-series datasets Essentially, tracking data is a stack of 2D or 3D data at mul-
tiple time points. ilastik treats individual file as one dataset, and the time axis should be
specified according to the specific data organization. This means, if your tracking data
is stored as multiple files, we should use Add Volume from Stack; if your tracking
data is a single stack file, then we should use Add one or more separate Files.
In this case, we will use the latter. After the data is added in the project, you will notice
that in the Axes column of the top-right panel it is specified as “xyz" rather than “xyt"
(Fig. 3.2), because it considers the data as 3D not 2D+time. We need to correct it by right
clicking the mouse at the row of our data, and the Edit properties, then change the
Axes information from “xyz" to “xytc". Here “c" stands for channel, and we do have one
channel.

FIGURE 3.2: Data property panel.

In this example, we use all the features of sizes 1.6, 3.5 and 5.0. Then we paint some
background pixels with Label 1 (red by default) and cell nucleus are marked with Label
2 (green by default). When happy with the live segmentation, we can apply the learned
model to the entire dataset and export the results for further use in tracking. In thePrediction
Export applet, we can specify the location and file format usingChoose Settings. It
is the same way as described in Section 2.5. However, since the pixel classes prediction will
be used as intermediate results to another ilastik workflow, we could save it as an hdf5 file,
an ilastik-friendly format. A copy of the prediction (mitocheck_small_export.h5)
and the Pixel Classification workflow project (mitocheck_pixel.ilp) can be found
in the Session3 folder.

3.4.2 ilastik Automatic Tracking workflow

3.4.2.1 Object extraction

Now, the Automatic Tracking workflow can be launched from the start screen of ilastik by
creating a new project (Fig. 3.3). To begin, the raw data and the prediction maps (the re-
sults from the Pixel Classification workflow or segmented images from other sources) need
to be specified in their respective tab. In particular, the file mitocheck_small.tif is
added as Raw Data and the dataset in mitocheck_small_export.h5 is loaded as
Prediction Maps.

35

FIGURE 3.3: Tracking workflow staring page.
FIGURE 3.4: Foreground objects to be tracked.

Again, the tracking workflow expects the image sequence to be loaded as a time-series
data containing a time axis; if the time axis is not automatically detected (as in hdf5-files),
the axes tags may be modified in a dialog when loading the data (e.g. the z axis may be
interpreted as t axis by replacing z by t in this dialog). A detailed description of similar
step is in Section 3.4.1.

The prediction maps store a probability for each single pixel/voxel to be specific class
defined in the pixel classification. First, the channel of the prediction maps which con-
tains the foreground predictions has to be specified in the Thresholding and Size
Filter applet. For instance, if in the Pixel Classification workflow, the user chose Label
1 (red by default) to mark foreground, Channel will be 0, otherwise, if Label 2 (green
by default) was taken as the foreground label, then Channel takes value 1. Thus, we
choose the Input Channel to be 1. These probabilities can be smoothed over the neigh-
boring probabilities with a Gaussian filter, specified by the Sigma values (allowing for
anisotropic filtering). The resulting probabilities are finally thresholded at the value
specified. The default values for the smoothing and thresholding should be fine in most
of the cases. Please consult the ilastik online documentation of the Object Classification
workflow for a more detailed description of this applet, including an explanation of the
Two thresholds option.

As mentioned before, although the tracking workflows expect prediction maps as in-
put files, nothing prevents the user from loading binary segmentation images instead. In
this case, we do NOT want to apply the smoothing filter and thresholding to the binary
images, so Sigmas should be set to 0.0 to keep the original segmentation images. Finally,
objects outside the given Size range are filtered out. And we could now proceed by
pressing Apply (Fig. 3.4).

Please note that all of the following computations and the tracking will be invalid
(and deleted) when parameters in this step are changed.

Next, we will go to Object Feature Computation applet, which is the most
computationally intensive preprocessing step of the tracking workflows. Note that depen-
dent on the size of the datasets, this step might take from minutes to hours. But this is also
the less interactive step - all we have to do here is to press the Calculate Features

36

C
H

A
P

T
E

R
3

—
2

D
+

T
IM

E
T

R
A

C
K

IN
G

button. Neighboring pixels are then grouped in 2D to define individual objects, those ob-
jects are assigned independent and unique identities (indicated by distinct random colors
in the Objects layer), and features of the objects (e.g. region centers) are computed.

3.4.2.2 Tracking

Now, we can start with the actual tracking of the detected objects. If CPLEX is installed, it
is possible to launch the automatic tracking workflow (Chaingraph) and – after the same
preprocessing steps as described above – we arrive at the automatic tracking applet. To
track the objects detected in the preprocessing steps over all time steps, it is enough to
press the Track button. For detailed explanation of the parameters and the algorithm
behind, please refer to the online documentation and [1]. After successful tracking, each
object and its children (in case of divisions) should be marked over time in a distinct
random color. The results can be visualized directly in ilastik, or we can also export the
objects, using the same export steps we have done previously. Since there might be a large
amount of objects in the image thus large object label ID, the exported tracking objects
images are set to 32bits. In case such exported images do not show object labels properly
when usingImport -> Image Sequence (whole 2D time series) orOpen (individual
exported time frame), we could use Bio-Formats Importer instead.

Fig. 3.5 shows the tracking results of the first five frames ofmitocheck_small.tif.
We showed both the ilastik Automatic Tracking workflow results (top) and the Fiji 3D
Object Counter results (bottom). For most of the objects, both methods provided correct
tracking results. The box frames highlighted three cases of two consecutive frame where
Fiji 3D Object Counter method and ilastik differ. As mentioned before, the underlying
condition for using Fiji 3D Object Counter for 2D+t tracking is that, the same
object from one time frame to the next has some overlapping, and also from this next
frame to its own next, and so on. And in situations e.g. when the cell moves too fast, or the
time interval between frames is too long, etc, the spatial discontinuity makes this method
not applicable. On the other hand, the ilastik tracking workflow can deal with it and give
correct tracking results.

3.5 Tracking analysis in Fiji: plot trajectory, displacement, or velocity

Once the objects are correctly identified and tracked along time, we could do some further
analysis such as extracting trajectories (Fig. 3.7) and calculating displacements and veloc-
ities (Fig. 3.8). We will now find out how to do this in Fiji. In this practice, we will write our
own Macro script. By now, we are at ease with the great function Plugins -> Macros
-> Record. Next we will try to take advantage of some ImageJ built-in functions. Please
note that the plotting functionality in Fiji is probably not amongst the most powerful and
versatile ones, but it still can manage basic demands. We would like to introduce it as a
quick checking means before going for more complex scenes.

Let’s treat each object as a rigid body, meaning that everywhere inside the object has
exactly the same dynamic behavior. Therefore, we could simplify the problem and look at
just one specific point of the object. Good candidates could be the centroid and center of
mass. Let’s take the centroid as example for illustration. The task now is to obtain a list of

37

Fi
ji

3D
 O

C
ila

st
ik

 T
ra

ck
in

g

FIGURE 3.5: Results from two methods. The same color indicate the same object across frames.
Most of the objects are correctly tracked using both methods. Highlighted colored box frames mark
where the two methods worked differently. Note that the two methods may assign a different ID to
the same object thus the coloring correspondence is lost.

FIGURE 3.6: Example Results window of the first slice/frame showing the requested measure-
ments values from all objects in this slice.

38

C
H
A
P
T
E
R
3
-
-
2
D
+
T
I
M
E

T
R
A
C
K
I
N
G

the centroid coordinates in every slice where the object of interest is present. This means
that each slice of the original stack should be processed individually. Beware to process
the correct slice/time and record it to the correct time indices of centroid coordinates. To
this purpose, use the built-in macro function setSlice(). A for loop could be implemented
to go through all the slices, using nSlices, a built-in macro function returning the value
of the number of slices (or frames) of the active stack. In order to obtain object centroid
coordinates, we could use the Analyze Particles command to extract objects and
check theCentroid item in theAnalyze -> Set Measurements options window.
Additionally, in order to know which extracted centroids is the current object we are inter-
ested in, we should also check Min & max gray value in the same Analyze ->
Set Measurements options window. Since in previous steps we have identified the
objects over time through assigning each object a unique intensity value as its label ID,
then by checking the min or max gray value of this label image tells us which object cen-
troid we should be look for in each slice. When we run Analyze -> Measure or click
Measure directly in the ROI Manager window, the checked measurements items will
be displayed in a table shown in the Results window (Fig. 3.6). In order to retrieve the
table information, the built-in functions getResult and nResults can help, where getRe-
sult(“Column", row) returns a measurement from the Results table of in total nResults
rows. For example in Fig. 3.6, getResult(“X", 16) will return value 161.52, which is the
value of the last but also the nResultsth row (where nResults=17 but it is indexed as 16
since the first row has index of 0). Once we identify an object with its ID specified by the
intensity value in the label image, we can go through the objects list in the current slice
and look for it, using an if sentence to check this condition by comparing the ID values -
“Max" value (in this case “Min" or “Mean" values are also fine since they have the same
value). And once the condition is met, the centroid coordinates can be obtained by getting
the Columns “X" and “Y".

The following piece of the source code shows the corresponding part that implements
the steps described above. The mentioned built-in functions are highlighted in brown
color. Please note that we clean up the Results table and the ROI Manager after
finishing checking each slice.

//The object of interest, specified by "objID"
2 objID = 16;

4 //Define and initialize an array with a time flag for each frame, whether
the object "objID" is shown

objShowTime = newArray(nSlices);
6 Array.fill(objShowTime,0);
//Define and initialize two arrays to store the centroid coordinates in X

and Y axes
8 objCenterX = newArray(nSlices);
Array.fill(objCenterX,-1);

10 objCenterY = newArray(nSlices);
Array.fill(objCenterY,-1);

12

//Check the measurements options, i.e. min & max gray value and centroid
14 run("Set Measurements...", " min centroid redirect=None decimal=2");

16 for(i=1;i<=nSlices;i++)

39

{
18 //Select the binary mask stack image, with image ID "cpID", and get the

slice i
selectImage(cpID);

20 setSlice(i);
//analyze the regions of each object in slice i, and add the regions to

roiManager, to obtain ROI selection
22 run("Analyze Particles...", "size=0-Infinity circularity=0.00-1.00 show=

Nothing add");

24 //We would like to measure the min/max gray value in the object label
image so as to get object "objID"

selectImage(lblID);
26 setSlice(i);

roiManager("Measure");
28

//Going through all the shown objects in the current slice to look for the
object with "objID"

30 for(j=0;j<nResults;j++)
{

32 current_objID=getResult("Max", j);
if (current_objID==objID)

34 {
print(current_objID);

36 objShowTime[i-1]=1;
objCenterX[i-1]=getResult("X", j);

38 objCenterY[i-1]=getResult("Y", j);
}

40 }

42 //Clean up, for each slice, the Results table and also the ROI Manager
run("Clear Results");

44 selectWindow("ROI Manager");
run("Close");

46 }

:

3.5.1 Plot trajectories on image

In this exercise, we aim at practicing ImageJ built-in functions to extract measurements
from the Results table and further plot object trajectory on image. For illustration, the
simplest situation of plotting one trajectory from a single object at a time is considered.

In Fiji, we could use the built-in function makeLine in order to plot the trajectory
of the centroid positions overlaid on the image (e.g. the first frame or the first frame
when the object shows up). Since this function only takes integer pixel positions, the
function floor is used to always take the integer part of the coordinates and omit the
decimal part. The code below realizes the trajectory we want to plot. It should be inside
a for loop since it prints the trajectory segment by segment between two consecutive
centroids. The Properties command configures the line appearance. And we need
the ROI Manager to keep every line segment on display. Is there any special attention
we should pay to the ROI Manager?

40

C
H
A
P
T
E
R
3
-
-
2
D
+
T
I
M
E

T
R
A
C
K
I
N
G

makeLine(floor(objCenterX[i-1]),floor(objCenterY[i-1]),floor(objCenterX[i]),
floor(objCenterY[i]));

2 run("Properties... ", "name=[] position=none stroke=Red width=2");
roiManager("Add");

:

An alternative is the makeSelection built-in function with polyline type, which
does not need to plot line segment by segment but rakes the coordinates arrays.

Fig. 3.7 shows four examples of trajectories overlaid on the mask image. The source
code can be found in the Session3 folder (“Tracking_measurements.ijm"). How to plot
multiple trajectories in one goal is left for those who are interested to practice yourselves
after the course. Also, The Fiji built-in functions “Overlay" is an alternative to display
trajectories. We will also leave it for your own exploration.

FIGURE 3.7: Example trajectories (marked in red lines) of object centroid movements.

3.5.2 Plot displacements or velocity

Examining the object displacements or velocity changes is another interesting measure-
ment for tracking studies. Since we have already obtained the centroid position at each
time frame, then the displacement of the centroid point from one time point to the next is
the distance between the two positions. The displacement is the square root of the sum of
squared difference between each coordinates of the points, which is calculated as shown
in line 3 of the code below, in our case. The built-in function sqrt calculates the square
root of a given number. The displacements over time can be stored in an array, “disp",
which starts with one array element and keeps growing. This is because we do not expect
to know in advance the temporal span of each object. Line 6-13 shows how the array
element grows. In the code a flag “arrayOK" is used, what is its use?

1 disp = newArray(1);
arrayOK = false;

3

current_disp = sqrt((objCenterX[i]-objCenterX[i-1])*(objCenterX[i]-
objCenterX[i-1]) + (objCenterY[i]-objCenterY[i-1])*(objCenterY[i]-
objCenterY[i-1]));

5 //store the current displacement into the arry "disp"

41

if (arrayOK)
7 {

disp = Array.concat(disp,current_disp);
9 }else
{

11 Array.fill(disp,current_disp);
arrayOK = true;

13 }

:

And if the time interval is known, the displacement divided by the time interval gives the
velocity. ImageJ offers the Plot functions to create a window showing a plot. Use it like
this:

1 //Set the right time frame - xCoord - for the plot.
//startFr and endFr mark the frames when the current object shows up and

finishes
3 xCoord = newArray(endFr-startFr+1);
for(i=startFr;i<=endFr;i++)

5 {
xCoord[i-startFr]=i;

7 }
Plot.create("Fancier Plot", "Frame", "Displacements (pixel)");

9 //Set the display range of each axis.
//maxY is the maximum displacement of the current object from array disp

11 Plot.setLimits(0, nSlices, 0, maxY+1);
Plot.setLineWidth(2);

13 Plot.setColor("lightGray");
Plot.add("line", xCoord, disp);

15 Plot.setColor("red");
Plot.add("circles", xCoord, disp);

17 Plot.show();

:

And Fig. 3.8 shows four examples of such plots from the corresponding objects shown in
Fig. 3.7. Despite of the noisy profile, the differences in terms of amplitude and pattern are
discernible.

3.6 Tips and tools

• ImageJ Built-in Macro Functions: http://rsbweb.nih.gov/ij/developer/
macro/functions.html

• Built-in functions used: getDimensions, getStatistics, newArray, Array.fill, Array.concatenate,
setSlice, nSlices, nResults, getResult, makeLine, Plot

• CPLEX installation guid: http://ilastik.github.io/installation/installation.
html

• EuBIAS 2013 - BioImage Data Analysis Course: http://eubias2013.irbbarcelona.
org/bias-2-course

42

http://rsbweb.nih.gov/ij/developer/macro/functions.html
http://rsbweb.nih.gov/ij/developer/macro/functions.html
http://ilastik.github.io/installation/installation.html
http://ilastik.github.io/installation/installation.html
http://eubias2013.irbbarcelona.org/bias-2-course
http://eubias2013.irbbarcelona.org/bias-2-course

C
H

A
P

T
E

R
3

—
2

D
+

T
IM

E
T

R
A

C
K

IN
G

FIGURE 3.8: Example displacements of centroids from the four objects as in Fig. 3.7 (order: left to
right and top to bottom).

3.7 Groups close by which work on similar problems

• Dr. Karl Rohr’s group, Biomedical Computer Vision Group (http://www.bioquant.
uni-heidelberg.de/?id=322), located at Bioquant

• Prof. Fred Hamprecht’s group, Multidimensional Image Processing Group (http:
//hci.iwr.uni-heidelberg.de/MIP/), located at HCI, Speyererstr. 6

• Dr. Christian Conrad’s group, Intelligent Imaging Group (http://ibios.dkfz.
de/tbi/index.php/intelligent-imaging/people/94-cconrad), lo-
cated at Bioquant

3.8 References

[1] B X Kausler, M Schiegg, B Andres, Lindner M, Leitte H, Hufnagel L, Koethe U, and F A Ham-
precht. A discrete chain graph model for 3d+t cell tracking with high misdetection robustness.
In Proceedings of the European Conference on Computer Vision (ECCV 2012), 2012.

[2] B Neumann, T Walter, J-K Hériché, J Bulkescher, H Erfle, C Conrad, P Rogers, I Poser, M Held,
U Liebel, C Cetin, F Sieckmann, G Pau, R Kabbe, A Wünsche, V Satagopam, M H A Schmitz,
C Chapuis, D W Gerlich, R Schneider, R Eils, W Huber, J-M Peters, A A Hyman, R Durbin, R Pep-

43

http://www.bioquant.uni-heidelberg.de/?id=322
http://www.bioquant.uni-heidelberg.de/?id=322
http://hci.iwr.uni-heidelberg.de/MIP/
http://hci.iwr.uni-heidelberg.de/MIP/
http://ibios.dkfz.de/tbi/index.php/intelligent-imaging/people/94-cconrad
http://ibios.dkfz.de/tbi/index.php/intelligent-imaging/people/94-cconrad

perkok, and J Ellenberg. Phenotypic profiling of the human genome by time-lapse microscopy
reveals cell division genes. Nature, 464:721–727, 2010.

44

4
3D OBJECT BASED COLOCALIZATION

C
H

A
P

T
E

R
4

—
3

D
O

B
JE

C
T

B
A

S
E

D
C

O
L

O
C

A
L

IZ
A

T
IO

N

All things appear and disappear because of the
concurrence of causes and conditions. Nothing
ever exists entirely alone; everything is in relation
to everything else.

Hindu Prince Gautama Siddharta

We would like to thank Dr. Ke Peng (Virology department, University of Heidelberg)
for sharing some of his datasets and accepting to expose part of the methodology
involved in his own research work.

Part of ilastik general description was adapted from ilastik online documentation.

47

4.1 Aim

In this project we will first train a pixel classifier in ilastik to segment object of interest;
then we will implement an ImageJ macro to analyze 3D object based colocalization in
multiple channels; finally how the colocalization results can be visualized will be dis-
cussed.

4.2 Introduction

FIGURE 4.1: (top) The Hela cells dataset (with two channels) from two views. (bottom) The pre-
diction from the trained classifiers using ilastik Pixel Classification workflow, also from two views.
Higher intensity in the prediction images indicates higher probability of being the objects of interest.

Subcellular structures interact in numerous ways, which depend on spatial proximity
or spatial correlations between the interacting structures. Colocalization analysis aims at

48

C
H

A
P

T
E

R
4

—
3

D
O

B
JE

C
T

B
A

S
E

D
C

O
L

O
C

A
L

IZ
A

T
IO

N

finding such correlations, providing hints of potential interactions. Talking about colocal-
ization, we often also think about deconvolution. Careful image restoration by deconvo-
lution removes noise and increases contrast in images, improving the quality of colocal-
ization analysis results. However, deconvolution is not the focus of this session. Therefore,
we would assume that the images to be processed are either already deconvolved or are
acquired with high image quality without the need of deconvolution.

Typically, two categories of approaches to colocalization analysis can be found: in-
tensity based correlation methods and object based methods. We will focus on object
based methods in this session. Most object-based colocalization methods first segment
and identify objects, and then account for objects’ inter-distances to analyze possible
colocalization. Usually the centroids of these objects are determined and used to calculate
the distance [1–3]. Here we will use another criteria, two objects with certain percentage
of volume overlap, as the indication of colocalization.

Dataset: Virologists often need to answer the questions of when and where the viral
replication happens and the relevant virus-host interactions. The dataset (see Fig. 4.1 top
as an example) we are using in this session is Hela cells imaged with a Spinning disk
microscope. Z serial images were acquired in three channels, from which two are used:
channel 1 (C1, red) shows viral DNA in high contrast and channel 3 (C3, green) shows viral
particles in high contrast (a viral structural protein). The high contrast signals either come
from synthetic dyes or fluorescent protein. The goal is to identify the viral particles that
have synthesized viral DNA indicating such structures represent replicating viral particles
and potentially the viral replication sites. Thus, the identification can be achieved through
a colocalization analysis between the objects in these two channels.

4.3 Segmenting spots using ilastik Pixel Classification workflow

There are multiple tools for detecting spot-like structures, including the two methods we
have used in the spots counting session. For this session, we will practice a bit more with
ilastik, i.e. we will train a spot classifier using ilastik Pixel Classification workflow. This
learning based method is especially suitable for training a classifier that can “pick" objects
of interest out of other structures in the same image. For datasets like in Fig. 4.1 top, we
are only interested in highly-contrast spot-like structures, which coexist with others such
as nucleus and cloud-like objects.

For this Hela cell dataset, we will use intensity and texture features of sizes 0.7, 1.0,
1.6, and 3.5 (Fig. 4.2 top) for both channels. Of course, you can also try using a different
set of features if they work better to you. Then we paint some particle voxels with Label 1
(red) and background ones are marked with Label 2 (green) to train ilastik to classify these
two types for the whole volume (Fig. 4.2 bottom). When happy with the live segmentation
prediction, we can apply the learned model to the entire dataset and export the results
for further use in colocalization. Fig. 4.1 bottom shows the results of the predicted objects
from training. In the Prediction Export applet, we can specify the location and file
format we want to export using Choose Settings. It is the same way as described in
Section 2.5. We will export the prediction images as a tif sequence type in separate

49

folders for different channels. A copy of the prediction images and the Pixel Classification
workflow project can be found in the Session4 folder.

FIGURE 4.2: (top) Selected features for training the particle classifier in Hela cells. (bottom) Example
training labels for particles (red) and background (green), with insets of zoomed in views.

4.4 Writing our own ImageJ macro for fully automatic colocalization

Many of you may have already been using tools e.g. the ImageJ plugin JACoP [1] for object-
or intensity-based colocalization analysis. Here, we will not use any of these, but try to
write our own macro for fully automatic colocalization so that we could establish our own
protocols and control settings, and at the same time practice more with macro scripting.

We have practiced in the previous sessions with: the function [Plugins -> Macros
-> Record] to track the sequential operations that have been applied; cleaning up and
converting the recorded macro commands to a functional macro file; and even a few
ImageJ built-in functions. In this session, we will exploit a little bit more ImageJ Macro
scripting, e.g. use more and different functions, construct a parameter setting interface
window, etc.

In order to help better understanding the steps during the object-based colocaliza-
tion, we will first use a synthetic dataset to test and build up the macro. And once our

50

C
H

A
P

T
E

R
4

—
3

D
O

B
JE

C
T

B
A

S
E

D
C

O
L

O
C

A
L

IZ
A

T
IO

N

macro program is working, we will test it on the segmented dataset from the previous step.
Fig. 4.3 shows two 3D views of the synthetic dataset with two channels, where channel 1
(red) has six objects and channel 2 (blue) seven. Each object in channel 1 has different
level of spatial overlap with one of the objects in channel 2. The synthetic dataset can be
found in the Session4 folder (C1_syn and C2_syn).

FIGURE 4.3: Synthetic 3D dataset from two views.

4.4.1 Filtering objects by size

Often the segmentation contains objects that are not interesting for us such as noise or
other structures. Since object-based methods concern individual objects, then we should
apply some filtering criteria in order to discard them for further analysis. Such criteria
could be, for example:

• (3D/2D/1D) size range of the object-of-interest (in each channel)

• object shape, e.g. circularity1, compactness2

• object location

It should be mentioned that this step greatly influences the colocalization measurements.
We will discuss only size related filtering here. Our strategy consists of two steps: filtering
in 3D, and then in 2D.

4.4.1.1 Filtering by 3D sizes

As we have already learned from the previous session, 3D Objects Counter is able
to do this. We can open the macro file “S4_filtering.ijm" and add steps in. After

1Circularity measures how round, or circular-shape like, the object is. In Fiji, the range of this parameter is
between 0 and 1. The more roundish the object, the closer to 1 the circularity.

2Compactness is a property that measures how bounded all points in the object are, e.g. within some fixed
distance of each other, surface-area to volume ratio. In Fiji, we can find such measurements options from the
downloadable plugin in Plugins -> 3D -> 3D Manager Options.

51

running it, we will be asked to specify the directories where the images from two channels
are, and also a directory to store results. After that, we will see a window with many
parameters to setup. Let’s skip these first, and comment on them at later steps. So now let’s
select the image of channel 1, and then run [Analyze -> 3D Object Counter], in
the popup window there are two parameters of our interest, Min and Max in the Size
filter field. Let’s suppose that the object of interest should have a size of minimum 3
voxels and maximum 10 voxels in each of the three dimensions, resulting in object volume
of size Min=27 and Max=1000. This filtering step removes the smallest object from both
channels. Although they may seem to overlap with objects in the other channel, they are
likely to be e.g. noise and their spatial co-occurrence could be coming from randomly
distributed particles/noises that are close to each other by chance. Since in this session
we may have to produce many intermediate images, so it might be a good practice to
rename these intermediate images. And if they will not be used any further, they might
as well just be closed by running [File -> Close].

FIGURE 4.4: Synthetic 3D dataset after first filtering in 3D (left), then also in 2D (middle), and the
overlapping regions after the filtering steps (right).

4.4.1.2 Filtering by 2D sizes

You may have noticed that this filtering criteria is not sufficient to remove the large object
in channel 1 (Fig. 4.4 left). This is because e.g. the object is very thin in one or two axes
and large in other(s) thus the total 3D size may be within the size range of the object of
interest. In this case, it makes sense to have another filtering but in 2D rather than in 3D.

For example, one possibility is to set a size range in the XY plane, and if needed also
a maximum spanning size in the Z axis. In order to do this, we will use [Analyze ->
Analyze Particles] and its Size parameter setting. So similarly we could set the
value to be e.g. 9-100. Also, distinct size range can be employed for each channel if
needed. Additionally, for some applications, the parameter Circularity could also be used.
Since we would like to obtain the filtered image, thus “Masks" will be chosen to Show.
Note that the Analyze Particles function works on binary images only, then we
first need to convert the label image by the 3D Object Counter, which is a label image.
A simple thresholding should work, since the label starts at 1. Normally the binary image

52

C
H

A
P

T
E

R
4

—
3

D
O

B
JE

C
T

B
A

S
E

D
C

O
L

O
C

A
L

IZ
A

T
IO

N

after thresholding has value 0 and 255. Sometimes, a binary image of value 0 and 1 makes
further analysis easier. To do so, we could divide every pixel by this image’s non-zero value,
i.e. 255, using [Process -> Math -> Divide].

What should we do if the 2D filtering is to be done in the XZ plane? If the axes are
swapped, so as the original XZ plane will be the new XY plane, then we could apply the
same procedure on the axes-swapped image. This can be done with e.g. [Plugins ->
Transform -> TransformJ -> TransformJ Rotate], which applies to the im-
age a rotation transform around the three main axes. Please note that if the image to be
processed is large, this will not be the optimal solution as it will be both time and computa-
tion expensive to apply a transform and interpolate the whole image. A faster option could
be [Plugins -> Transform -> TransformJ -> TransformJ Turn]. The ad-
vantage of using this plugin rather than the more generally applicable [Plugins ->
Transform -> TransformJ -> TransformJ Rotate] is that it does not involve
interpolation of image values but merely a reordering of the image elements. As a result,
it generally requires much less computation time, and does not affect image quality.

Another possibility, probably the easier option in many cases, is the erosion + dilation
operations in 3D. In this case, we would only want to erode and then dilate in one dimen-
sion - the one where object-to-be-removed is thin. Let’s try it, Process -> Filters
-> Minimum 3D and thenProcess -> Filters -> Maximum 3Dwith the same
radius settings in each dimension. We will set both X and Y radius to 0 and try with Z
radius being 3.0, because the large object in Channel 1 is thin in Z axis. In general it
should work - provided the filter radius is not smaller than the object radius along its
smallest dimension, then the object should disappear and not return. This also gives the
possibility to filter anisotropically considering the fact that in many microscopy images
the Z spacing is larger than pixel size in then XY plane. Note that the erode/dilate alterna-
tive in the Plugins -> Process submenu will not work, because the filter size is not
adjustable). On the other hand, please keep in mind that the erode and dilate operations
may modify object shape, especially when objects are not roundish blob-like.

Depending on specific applications, more filtering steps can be applied before or after
the previous size filtering, such as shape or location. In this session we will not discuss in
details and assume the size filtering is sufficient for our task (Fig. 4.4 middle).

4.4.2 Finding spatial overlapping objects in both channels

In order to find colocalized objects, we will first find the overlapping (or shared) parts of
the two filtered channels, and then identify the corresponding objects in each channel
that contain these overlapping regions. To achieve this, what do we need to do? There are
multiple ways, all of which involve:

• in each channel, label the objects so as to identify them;

• in each channel, calculate the volume (in voxels) of each object;

• compute the objects’ overlapping regions of the two channels;

• calculate the volume of each overlapping region.

53

• find the labels of objects in each channel that overlap with some object in the other
channel

These tasks could be done with the help of [Analyze -> 3D Object Counter] and
[Plugins -> 3D -> 3D Manager].

We could see that in both channels, the overlapping region has value higher than
zero; while the rest of the two images have either one or both channels with zero back-
ground. Therefore if we multiply the two images, only the overlapping regions will show
values higher than zero. So we can run [Process -> Image Calculator], set the
object maps of from the two channels as Image 1 and Image 2, and set Multiply as
Operation. Let’s call the obtained multiplicative image as “SharedMask". Fig. 4.4 right
shows the 3D view of the overlapping regions after the filtering steps. We can see that the
two overlapping but with too large and too small objects (see Fig. 4.3) are now excluded,
remaining four overlapping regions of the two channels. Note that the images of both
channels that contain objects filtered by size are binary images of values 0 and 1, thus the
"SharedMask" is also a binary image of values 0 and 1. Now, if we add the “SharedMask"
to the filtered binary images of each channel, the two resultant images would give back-
ground zero value, all the objects in each channel value 1, except where the overlaps is, i.e.
2. Then when using “3D hysteresis thresholding" plugin, only regions with value >= a low
threshold (i.e. 1) that also contain value >= a high threshold (i.e. 2) are extracted, i.e. the
objects containing the overlaps. Therefore, we have obtained also one image per channel,
which contains only objects that overlap with some object in the other channel.

Since we define the object volume overlap ratio as the colocalization criteria, objects
and their volume values in both channels and the SharedMask should be calculated. We
need to make sure in [Analyze -> 3D OC Options], to check the option of “Nb of
Obj. voxels" (if we count voxels) or “Volume" (number of voxels multiplying voxel
size). If the voxel size is not set, by default it is 1 for each dimension, thus these two
parameters give the same value. After running the 3D Objects Counter, the resulted
Object map gives each object a unique non-zero label and the background the zero
label. Also, the measurements will be shown in a table. You may recall that in 3D OC
Options menu, if “Store results within a table named after the image (macro friendly)"
is not checked, the results are stored in the Results table. This way we could use the
built-in macro functions nResults and getResult to access items in the table. Let’s
do this again, with the following code:

1 ObjVolume_ch1 = newArray(nResults);
print("ObjVolume_ch1 ("+nResults+"): ");

3 for(i=0;i<nResults;i++){
ObjVolume_ch1[i] = getResult("Nb of obj. voxels", i);

5 print(ObjVolume_ch1[i]);
}

:

This code first creates a new array, ObjVolume_ch1, so as to store all objects’ volumes in
the current channel. It is then filled with the values obtained from theResults table. For
checking the code we could also print the array. Similar arrays and object labels should be
created for the other channel and the SharedMask.

54

C
H
A
P
T
E
R
4
-
-
3
D
O
B
J
E
C
T

B
A
S
E
D

C
O
L
O
C
A
L
I
Z
A
T
I
O
N

So far we have obtained the objects’ labels and volume values in each channel and
the “SharedMask" image. The next task will be to identify the labels of each object pair
that overlap, in order to further find out their corresponding overlap volume ratio. Before
jumping into the next part, let’s ask ourselves a question - does our problem involve ana-
lyzing individual colocalized objects, or rather a global measure that tells something about
colocalized objects as a whole? If the answer to your problem is the later, then we could
skip the remaining of this section and the following one. Instead, probably some nice
tools could do the job for us. For example as mentioned previously, the ImageJ plugin
JACoP [1] offers measures, e.g. Mander’s Coefficients, Overlap Coefficient, and object-
based methods. We will not provide detailed descriptions on how to work with them here,
please refer to their corresponding online documentation.

If you are interested in studying individual colocalized objects and their further char-
acteristics, such as their spatial distribution, shape, size, etc, we will go on to the next task
of identifying in each channel which objects overlap with objects in the other channel.
Since we know the overlapping regions, then we just need to look at the same regions
in each of the two channels to get these objects that have overlapping parts in the other
channel. We have used ROI Manager before, now we will use another function from
the plugins we installed: [Plugins -> 3D -> 3D Manager]. It plays a similar role
as the ROI Manager but in 3D. So the first thing is to add the 3D overlapping regions
into the 3D Manager so that we could use them for further measurements, and also for
inspecting the same regions on other images such as the label images. To do so, we will
use the following code3:

selectImage("Objects map of Shared Mask");
2 run("3D Manager");
Ext.Manager3D_AddImage();

4 Ext.Manager3D_SelectAll();

:

After adding the 3D overlapping regions into the 3D Manager, we will select the object
label image of channel 2 so as to find out the corresponding label values for every overlap-
ping region. Similar to what we have done before, we can measure the maximum intensity
value of each region from the label image in channel 2. So we will check 3D Manager
Options and select the Maximum gray value. And then click the Quantif_3D in
the 3D Manager window. It will give a window named “3D quantif", with a column
named as “Max". This column stores the maximum gray values of each region in 3D
Manager from the label image in channel 2. Since it is not the usual “Results" table,
we can’t use the nResults and getResult built-in functions to access the contents
of this table. How do we obtain the objects in each channel that have these overlapping
regions? There are many ways to achieve this, but let’s see how to extract information
from any table, in this case a table named “3D quantif". The following code shows an
example of how we can get one column’s items from a table that is not the Fiji default
Results table:

shareObjLabelInCh2 = newArray(numSharedObjects);

3Note that the “Ext" is a built-in function added by plugins using the MacroExtension interface.

55

2 selectWindow("3D quantif");
tbl = getInfo("window.contents");

4 tblLines = split(tbl, "\n");
idx=0;

6 for (i=1; i<= numSharedObjects; i++){
lineA = split(strA[i], "\t");

8 shareObjLabelInCh2[idx]=lineA[2];
}

:

where (in lines 3-4) “tbl" stores everything in the “3D quantif" table as string, and we
can get each item from the table by two “split" operations: first into lines through the
line break “\n" (as in line 4) and then into separate items through the tab or column break
“\t" (as in line 7). shareObjLabelInCh2 is an array of size numSharedObjects, the number
of overlapping regions, which stores the object labels that contain the corresponding over-
lap part in channel 2. Of course, there is now a built-in function IJ.renameResults
available (if you have ImageJ version 1.46 or later) that changes the title of a results table
from one to another. Thus, we can always change the name of any table to “Results" and
then use the easier built-in functions nResults and getResults to get table contents.

4.4.3 Filtering the colocalization objects by volume overlap percentage
criteria

We have finally arrived to the stage that we are ready to select “real" colocalized objects
from the candidates. As we will use the volume overlap criteria, let’s first calculate the
volume overlap ratio. There may be several ways to define the ratio, we will use e.g. the
ratio between the overlapping region and the volume of the smaller of the two objects.
In order to not complicate the problem too much, we will assume that objects in one of
the channels have smaller size. This could be a reasonable assumption in many biological
applications. The following code realizes the process of determining the colocalization
using such selection criteria, assuming the channel with smaller objects is channel 2. A
new image stack, “SharedMask Filtered", is created and filled with the overlapping regions
that have volume size larger than the specified percent of the corresponding object in
channel 2:

1 selectImage("Objects map of Shared Mask");
run("3D Manager");

3 Ext.Manager3D_AddImage();
newImage("SharedMask Filtered", "8-bit black", width, height, slices);

5 for (j=0; j<numSharedObjects; j++){
objLabelInC2 = shareObjLabelInCh2[j];

7 voRatio=ObjVolume_shared[j]/ObjVolume_ch2[objLabelInC2-1];
print("volume overlap ratio of "+j+"th object in channel 2 is: "+voRatio+"

= "+ObjVolume_shared[j]+"/"+ObjVolume_ch2[objLabelInC2-1]);
9

//select the objects that have volume overlapping higher than a user
specified ratio, ‘‘volOverlap"

11 if (voRatio>volOverlap){
numColocObjects=numColocObjects+1;

13 Ext.Manager3D_Select(j);

56

C
H

A
P

T
E

R
4

—
3

D
O

B
JE

C
T

B
A

S
E

D
C

O
L

O
C

A
L

IZ
A

T
IO

N

Ext.Manager3D_FillStack(1,1,1);
15 }

}

:

where “numColocObjects" gives the total number of colocalization object pairs, “voRa-
tio" computes the volume overlap ratio, and “volOverlap" is a user-specified threshold
that discards objects with lower overlap ratio. Manager3D_FillStack fills the newly
created image with the selected 3D region. For each region, the values filled can be all
the same, or a different one as label. The final colocalized objects in each channel can
be obtained using again the 3D Hysteresis Thresholding, as we have done pre-
viously, but with the newly created overlapping regions image, “SharedMask Filter". In
the synthetic example, the four candidate objects have volume overlap ratio of: 0.11, 0.51,
0.25, and 1 (see Fig. 4.5 left). And if we specify “volOverlap" to be, e.g. 0.2, 0.3, 0.52, the
final “real" colocalization results differ, as shown in the three images on the right side,
respectively, in Fig. 4.5.

FIGURE 4.5: (left) Candidate colocalization objects from the two channels, the number next to each
object pair shows the volume overlap ratio compared to the blue channel objects. (middle-left -
right) Determined colocalization object pairs using specified ratio threshold of: 0.2, 0.3, and 0.52,
respectively.

4.4.4 Visualizing results

To better examine 3D data, Fiji offers [Plugins -> 3D Viewer] to visualize rendered
volumes, surfaces, or orthogonal slices. After opening the “3D Viewer" window, images
can be loaded using either [File -> Open] (for any image on disk) or [Add -> From
Image] (for images already loaded in Fiji). Multiple images can be loaded. For overlap-
ping images, we could modify image’s transparency by [Edit -> Change transparency].
Image brightness can be changed using [Edit -> Transfer Function -> RGBA].
There are many more possibilities to control and edit the visualization properties, we will
leave this as a homework for you to exploit further. Examples of visualizing 3D data using
this viewer can be found in many figures in this session such as Fig. 4.4, 4.5, 4.6.

57

FIGURE 4.6: Colocalized objects in channel 1 (red) and channel 2 (green), together with all filtered
objects in channel 1 (white with transparency) using the specified ratio thresholds: 0.01, 0.1, 0.2,
and 0.3. Their corresponding number of determined colocalization objects are: 25, 14, 9, and 9,
respectively.

4.4.5 Testing the macro on Hela cells with viral replication

The pipeline of operations we came up with can now be assembled to a complete macro
to process the original Hela cells stacks. We only miss one step at the very beginning.
Because the original Hela cells images are first segmented by ilastik. And we exported the
predictions of both channels, which are not binary image since they are the probabilities
of each voxel being the object of interest. Thus we would provide a threshold value to

58

C
H

A
P

T
E

R
4

—
3

D
O

B
JE

C
T

B
A

S
E

D
C

O
L

O
C

A
L

IZ
A

T
IO

N

binarize the images. Again, here the threshold value can be set differently for the channels.
In order to make things general to work for images with different intensity levels, if we
consider a threshold always between 0 and 1, then it can be scaled according to the image
intensity range. To do this, the built-in function getMinAndMax can be used to get the
original image intensity range, and then the threshold value can be calculated accordingly:

getMinAndMax(min,max);
2 setThreshold(min+(max-min+1)*thres,max);
run("Convert to Mask", "method=Default background=Dark black");

:

where “thres" is the threshold value between 0 and 1, and we assume the background has
low intensity value in this case.

So now when we try to analyze the Hela cell images, the parameters used for the
synthetic dataset may not be applicable anymore. Of course we could manually modify
each value through the entire macro file we made. But this is not efficient. So it is better
to use variables for these parameters, and specify them e.g. in the beginning of the macro
code.

After the macro is “parameterized", we can specify values. For this dataset, let’s set the
threshold to be 0.5 for both channels, and 3D object sizes to be [5, 500], and maximum 2D
object sizes in XY plane are 150 (for channel 1) and 50 (for channel 2). And volume overlap
ratio threshold can be any value between 0 and 1. Fig. 4.6 shows a few example results of
the Hela cell images.

Please note that for a complete colocalization analysis, further examination steps are
needed such as accuracy evaluation, robustness evaluation, and reliability evaluation like
comparing to random events. These are out of the scope of this session thus not discussed
here.

4.4.6 Setting up a parameter interface

You may find modifying parameters inside the source code of the macro not an elegant
usage. If you are willing, constructing a simple user interface window for parameters is
made very easy in Fiji. The Dialog.* functions offers a practical dialog box/window
with just a few lines of code. An example is shown in Fig. 4.7, with the code on the left side
and the generated dialog window the right side. Please note that the parameters that fetch
the values from the dialog should be specified following the same top-down order as the
dialog. Now we can create customized dialog window for the parameters that we would
like user to specify.

In case you do not have time to write up the complete macro during the session, a
possible solution is provided in your Session4 folder (coloc.ijm).

4.5 Tips and tools

• ImageJ Built-in Macro Functions: http://rsbweb.nih.gov/ij/developer/
macro/functions.html

59

http://rsbweb.nih.gov/ij/developer/macro/functions.html
http://rsbweb.nih.gov/ij/developer/macro/functions.html

FIGURE 4.7: An example of creating a dialog window for parameters to be specified by users.

• 3D ImageJ Suite: download: http://imagejdocu.tudor.lu/lib/exe/fetch.
php?media=plugin:stacks:3d_ij_suite:mcib3d-suite.zip and un-
zipping it in your plugins folder. Detailed description of the plugin: http://imagejdocu.
tudor.lu/doku.php?id=plugin:stacks:3d_ij_suite:start.

• JACoP (includes object-based method): http://imagejdocu.tudor.lu/doku.
php?id=plugin:analysis:jacop_2.0:just_another_colocalization_
plugin:start

4.6 Groups close by which work on similar problems

• Dr. Holger Erfle’s group, ViroQuant (http://www.bioquant.uni-heidelberg.
de/technology-platforms/viroquant-cellnetworks-rnai-screening-
facility/contact.html), located at Bioquant

• Dr. Karl Rohr’s group, Biomedical Computer Vision Group (http://www.bioquant.
uni-heidelberg.de/?id=322), located at Bioquant

4.7 References

[1] S Bolte and F P Cordelières. A guided tour into subcellular colocalization analysis in light
microscopy. Journal of Microscopy, 224:213–232, 2006.

[2] B Obara, A Jabeen, N Fernandez, , and P P Laissue. A novel method for quantified, superresolved,
three-dimensional colocalisation of isotropic, fluorescent particles. Histochemistry and Cell
Biology, 139(3):391–402, 2013.

[3] S Wörz, P Sander, M PfannmÃűller, R J Rieker, S Joos, G Mechtersheimer, P Boukamp,
P Lichter, and K Rohr. 3D geometry-based quantification of colocalizations in multichannel
3D microscopy images of human soft tissue tumors. IEEE Transactions on Medical Imaging,
29(8):1474–1484, 2010.

60

http://imagejdocu.tudor.lu/lib/exe/fetch.php?media=plugin:stacks:3d_ij_suite:mcib3d-suite.zip
http://imagejdocu.tudor.lu/lib/exe/fetch.php?media=plugin:stacks:3d_ij_suite:mcib3d-suite.zip
http://imagejdocu.tudor.lu/doku.php?id=plugin:stacks:3d_ij_suite:start
http://imagejdocu.tudor.lu/doku.php?id=plugin:stacks:3d_ij_suite:start
http://imagejdocu.tudor.lu/doku.php?id=plugin:analysis:jacop_2.0:just_another_colocalization_plugin:start
http://imagejdocu.tudor.lu/doku.php?id=plugin:analysis:jacop_2.0:just_another_colocalization_plugin:start
http://imagejdocu.tudor.lu/doku.php?id=plugin:analysis:jacop_2.0:just_another_colocalization_plugin:start
http://www.bioquant.uni-heidelberg.de/technology-platforms/viroquant-cellnetworks-rnai-screening-facility/contact.html
http://www.bioquant.uni-heidelberg.de/technology-platforms/viroquant-cellnetworks-rnai-screening-facility/contact.html
http://www.bioquant.uni-heidelberg.de/technology-platforms/viroquant-cellnetworks-rnai-screening-facility/contact.html
http://www.bioquant.uni-heidelberg.de/?id=322
http://www.bioquant.uni-heidelberg.de/?id=322

5
RELATED RESOURCES

To list just a few...

• Fiji online documentation: http://fiji.sc/Documentation

• ImageJ User Guide: http://rsbweb.nih.gov/ij/docs/guide/146.html

• ilastik online documentation: http://ilastik.github.io/documentation/
index.html

• EuBIAS 2013 - BioImage Data Analysis Course: http://eubias2013.irbbarcelona.
org/bias-2-course

• CMCI ImageJ Course page: http://cmci.embl.de/documents/ijcourses

• CMCI Macro programming in ImageJ Textbook: https://github.com/cmci/
ij_textbook2/blob/master/CMCImacrocourse.pdf?raw=true

• http://www.matdat.life.ku.dk/ia/sessions/session12-4up.pdf

• Fluorescence image analysis introduction:http://blogs.qub.ac.uk/ccbg/
fluorescence-image-analysis-intro/

• http://www.encite.org/html/img/pool/7_3D_image_reconstructions_
p115-144.pdf

• BioImage Information Index: http://biii.info/

• ...

63

http://fiji.sc/Documentation
http://rsbweb.nih.gov/ij/docs/guide/146.html
http://ilastik.github.io/documentation/index.html
http://ilastik.github.io/documentation/index.html
http://eubias2013.irbbarcelona.org/bias-2-course
http://eubias2013.irbbarcelona.org/bias-2-course
http://cmci.embl.de/documents/ijcourses
https://github.com/cmci/ij_textbook2/blob/master/CMCImacrocourse.pdf?raw=true
https://github.com/cmci/ij_textbook2/blob/master/CMCImacrocourse.pdf?raw=true
http://www.matdat.life.ku.dk/ia/sessions/session12-4up.pdf
http://blogs.qub.ac.uk/ccbg/fluorescence-image-analysis-intro/
http://blogs.qub.ac.uk/ccbg/fluorescence-image-analysis-intro/
http://www.encite.org/html/img/pool/7_3D_image_reconstructions_p115-144.pdf
http://www.encite.org/html/img/pool/7_3D_image_reconstructions_p115-144.pdf
http://biii.info/

Notes:

65

Notes:

66

Notes:

67

Notes:

68

	Contents
	Preface and Acknowledgements
	Fiji and ilastik
	Aim
	Fiji
	Installation and updates
	Plugins

	ilastik: the interactive learning and segmentation toolkit
	Installation and updates
	Install CPLEX

	Resources

	Counting spots
	Aim
	Introduction
	A Fiji solution
	Detecting objects
	Detecting and counting nucleus
	Detecting lyososome spots

	Counting spots
	counting spots in nucleus
	counting spots in regions where mitochondria also presents

	Convert the recorded commands into a macro script

	ilastik solution
	ilastik Density Counting workflow
	Training and predicting density
	Counting objects/spots
	Counting using Box in ilastik

	Counting in Fiji from ilastik predictions using arbitrary shapes
	Tips and tools
	Groups close by which work on similar problems
	References

	2D+time tracking
	Aim
	Introduction
	a Fiji solution
	Other possibilities to solve tracking problem

	ilastik solution
	Segmentation with ilastik Pixel Classification workflow
	ilastik Automatic Tracking workflow
	Object extraction
	Tracking

	Tracking analysis in Fiji: plot trajectory, displacement, or velocity
	Plot trajectories on image
	Plot displacements or velocity

	Tips and tools
	Groups close by which work on similar problems
	References

	3D Object based colocalization
	Aim
	Introduction
	Segmenting spots using ilastik Pixel Classification workflow
	Writing our own ImageJ macro for fully automatic colocalization
	Filtering objects by size
	Filtering by 3D sizes
	Filtering by 2D sizes

	Finding spatial overlapping objects in both channels
	Filtering the colocalization objects by volume overlap percentage criteria
	Visualizing results
	Testing the macro on Hela cells with viral replication
	Setting up a parameter interface

	Tips and tools
	Groups close by which work on similar problems
	References

	Related resources

